Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731652

ABSTRACT

Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, ß-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of ß-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.


Subject(s)
Caseins , Endorphins , Humans , Animals , Caseins/chemistry , Caseins/metabolism , Caseins/genetics , Endorphins/chemistry , Endorphins/metabolism , Milk/chemistry , Milk/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/genetics , Opioid Peptides/chemistry , Opioid Peptides/metabolism , Cattle
2.
Foods ; 13(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38472886

ABSTRACT

This study investigated food safety issues as perceived by food companies and food safety authorities in six countries in Europe and Central Asia. A total of 66 companies and 16 authorities participated in the survey. The results provide important insights related to what the main food safety priorities are, how they are addressed in the countries that participated in the survey, and what the role of the main stakeholders is in the food value chain. Almost 50% of food companies identified 'food fraud' as the most influential food safety attribute. One-third of food safety authorities recognized 'food safety management system' as the most influential food safety attribute. Principal component analysis separated food safety statements into two dimensions named 'food safety hazards and risks' and 'food safety system'. Although there are slight differences in food safety statements between the two stakeholders, i.e., food companies and food safety authorities, it is the country of origin that plays a more important role in understanding their views. Food companies will need to implement a systemic approach and transform the entire food value chain continuum while considering new food safety challenges. It is expected that food safety authorities will have to play a more proactive role in the future.

3.
Food Res Int ; 173(Pt 2): 113414, 2023 11.
Article in English | MEDLINE | ID: mdl-37803746

ABSTRACT

The inhibitory effects of liquiritigenin, liquiritin and glycyrrhizic acid against the hazards during the preparation of thermal reaction beef flavoring were investigated using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Liquiritigenin(1.5 mM) inhibited Nε-carboxymethyl-L-lysine and Nε-carboxyethyl-L-lysine by up to 38.69 % and 61.27 %, respectively; 1.5 mM liquiritin inhibited 4-methylimidazole by up to 48.28 %; and 1.5 mM liquiritigenin and 1.0 mM liquiritin inhibited hydroxymethylfurfural by up to 61.20 % and 59.31 %, respectively. The results of the model system showed that the inhibitory effect of the 3 inhibitors could be extended to other thermal reaction flavoring systems. The 3 inhibitors can effectively block key intermediates in beef flavoring, and liquiritigenin can inhibit up to 22.97 % of glyoxal and 22.89 % of methylglyoxal. In addition, liquiritigenin and liquiritin can directly eliminate up to 25.87 % and 21.01 % of methylglyoxal by addition and other means. Free radicals in the simultaneous formation model system were measured using electron spin resonance (ESR), and the results showed that liquiritigenin, liquiritin and glycyrrhizic acid could scavenge free radicals in the system in a dose-dependent manner, with scavenging rates of up to 44.88-57.09 %. Therefore, the inhibitory effects of the 3 inhibitors can be attributed to the intermediate blocking and free radical scavenging pathways.


Subject(s)
Glycation End Products, Advanced , Glycyrrhizic Acid , Animals , Cattle , Glycyrrhizic Acid/pharmacology , Tandem Mass Spectrometry , Pyruvaldehyde , Lysine/analysis , Meat/analysis , Free Radicals
4.
Food Res Int ; 172: 113176, 2023 10.
Article in English | MEDLINE | ID: mdl-37689929

ABSTRACT

Frying is one of the most popular and traditional processes used in the food industry and food services to manufacture products that are high in quality and with unique sensory characteristics. The most common method of frying is deep-fat frying, used worldwide due to its distinct flavor profile and sensory aspects, which leads to physio-chemical changes at both macro and micro levels. One of the major concerns with deep-fried foods is their high oil content, and a variety of metabolic disorders can be caused by overconsumption of these foods, including heart disease, obesity, and high cholesterol. Due to their enticing organoleptic properties with their delicious flavor, pleasing mouthfeel, and unique taste, making them irresistible, it is also responsible for undesirable and unacceptable characteristics for consumers. Oil absorption can be reduced by developing novel frying methods that limit the amount of oil in products, producing products with fewer calories and oil while maintaining similar quality, flavor, and edibility. In addition, different pretreatments and post-frying treatments are applied to achieve a synergistic effect. The transfer of mass and heat occurs simultaneously during frying, which helps to understand the mechanism of oil absorption in fried food. Researchers have discovered that prolonged heating of oils results in polar compounds such as polymers, dimers, free fatty acids, and acrylamide, which can alter metabolism and cause cancer. To reduce the oil content in fried food, innovative frying methods have been developed without compromising its quality which also has improved their effect on human health, product quality, and energy efficiency. The aim is to replace the conventional frying process with novel frying methods that offer fried food-like properties, higher nutritional value, and ease of use by replacing the conventional frying process. In the future, it might be possible to optimize frying technologies to substantially reduce fried foods' oil content. This review focuses on a detailed understanding of different frying techniques and attempts to focus on innovative frying techniques such as vacuum frying, microwave cooking, and hot-air frying that have shown a better potential to be used as an alternative to traditional frying.


Subject(s)
Food Industry , Food Services , Humans , Acrylamide , Commerce , Cooking
5.
Meat Sci ; 205: 109312, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37625356

ABSTRACT

Heterocyclic aromatic amines (HAAs) are detrimental substances can develop during the high-temperature cooking of protein-rich foods, such as meat. They are potent mutagens and carcinogens linked to an increased risk of various cancers. HAAs have complex structures with nitrogen-containing aromatic rings and are formed through chemical reactions between amino acids, creatin(in)e, and sugars during cooking. The formation of HAAs is influenced by various factors, such as food type, cooking temperature, time, cooking method, and technique. HAAs exert their toxicity through mechanisms like DNA adduct formation, oxidative stress, and inflammation. The research on HAAs is important for public health and food safety, leading to risk assessment and management strategies. It has also led to innovative approaches for reducing HAAs formation during cooking and minimizing related health risks. Understanding HAAs' chemistry and formation is crucial for developing effective ways to prevent their occurrence and protect human health. The current review presents an overview about HAAs, their formation pathways, and the factors influencing their formation. Additionally, it reviews their adverse health effects, occurrence, and the analytical methods used for measuring them.


Subject(s)
Amines , Amino Acids , Humans , Amines/toxicity , Meat , Oxidative Stress , Carcinogens/toxicity
6.
J Sci Food Agric ; 103(15): 7362-7373, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37394888

ABSTRACT

BACKGROUND: This investigation provides an important insight into Eurasian consumers' food safety beliefs and trust issues influenced by the COVID-19 pandemic. An online survey was conducted in 15 European and Asian countries involving more than 4000 consumers. RESULTS: It has confirmed that different socioeconomic characteristics, cultural aspects and education levels shape food safety perceptions within Eurasian countries. The COVID-19 pandemic influenced their beliefs and trust in food safety, which is relatively low on average. However, it is significantly higher for European consumers (especially European Union ones) compared to their Asian counterparts. Both Asian and European respondents agreed that food fraud and climate changes represent a food safety issue. However, European consumers were less concerned regarding the food safety of genetically modified foods and meat and dairy analogs/hybrids. Asian consumers were, to a greater extent, worried about the risk of getting COVID-19 from food, restaurants, food retail establishments and home food deliveries. CONCLUSION: Eurasian consumers have put their greatest extent of trust, when food safety assurance is concerned, into food scientists and food producers holding a food safety certificate. Broadly, they are uncertain to what extent their federal governments and food inspectors are competent, able and efficient in ensuring food safety. Higher education of Eurasian consumers was followed by increased food safety confidence in all parts of the food chain. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/epidemiology , Food Safety , Meat , Surveys and Questionnaires
7.
Antioxidants (Basel) ; 12(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37507926

ABSTRACT

Nanofibers, produced through the novel method of electrospinning, have a high ratio of surface area to volume, which allows them to have different optical, electrical, thermal, and mechanical properties than macroscale materials. In this study, it was aimed to produce nanofibers with gelatin and curcumin. The effects of gelatin concentration and crosslinking with citric acid on the characteristics of electrospun nanofibers were studied. Gelatin film containing neither citric acid nor curcumin was used as control. Solutions were evaluated by solution conductivity, color analysis, and rheological properties. Obtained nanofibers were characterized by morphological analysis (SEM), antioxidant activity (AA), thermal properties (TGA, XRD, DSC), water vapor permeability (WVP), and Fourier transform infrared (FTIR) analysis. It was found that the functional groups of gelatin were not changed significantly but some degree of crosslinking was seen, as indicated by the changes in AA, crystallinity, etc. Improvement in antioxidant activities was seen, which was the highest for gelatin and curcumin films (32%). The highest melting temperature (78 °C) and WVP (2.365 × 10-10 gm-1 s-1 Pa-1) was seen for gelatin and curcumin films crosslinked with 0.5% citric acid. Gelatin with curcumin films crosslinked with 1% citric acid showed the lowest crystallinity (1.56%). It was concluded that even though citric acid might not prove to be a stable crosslinking agent for the protein (gelatin), it contributed to the antioxidant nature of the films, along with curcumin. These films are promising candidates to be applied on cut fruits, to reduce water loss and oxidation and hence extend their shelf lives.

8.
Food Chem ; 428: 136763, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37421662

ABSTRACT

Nine different black garlic samples aged at varying temperatures and durations were added to the patties at 0.5% and 1% ratios and compared with raw garlic in terms of polycyclic aromatic hydrocarbons (PAHs) formation. The results showed that black garlic caused a reduction in the patties' content of ∑PAH8 by 38.17% to 94.12% compared to raw garlic, with the highest reduction percent in the patties fortified with 1% black garlic aged at 70 °C for 45 days. Beef patties fortified with black garlic reduced human exposure to PAHs from beef patties (from 1.66E to 01 to 6.04E-02 ng-TEQBaP kg-1 bw per day). The negligible cancer risk associated with exposure to PAHs through the consumption of beef patties was confirmed by very low ILCR (incremental lifetime cancer risk) values of 5.44E-14 and 4.75E-12. Finally, patty fortification with black garlic could be suggested as an effective way to reduce PAHs formation and exposure from patties.


Subject(s)
Garlic , Neoplasms , Polycyclic Aromatic Hydrocarbons , Animals , Cattle , Humans , Aged , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Temperature , Risk Assessment , Environmental Monitoring
9.
Foods ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37048331

ABSTRACT

Ganoderma lucidum is a medicinal mushroom that has been traditionally used in Chinese medicine for centuries. It has been found to have a wide range of medicinal properties, including antioxidant, anti-inflammatory, and immune-boosting effects. Recent research has focused on the potential benefits of G. lucidum in treating metabolic disorders such as diabetes and obesity, as well as its possible role in preventing and treating infections caused by the coronavirus. Triterpenoids are a major group of bioactive compounds found in G. lucidum, and they have a range of biological activities, including anti-inflammatory and antioxidant properties. These compounds have been found to improve insulin sensitivity and lower blood sugar levels in animal models of diabetes. Additionally, G. lucidum polysaccharides have been found to reduce bodyweight and improve glucose metabolism in animal models of obesity. These polysaccharides can also help to increase the activity of certain white blood cells, which play a critical role in the body's immune response. For coronavirus, some in vitro studies have shown that G. lucidum polysaccharides and triterpenoids have the potential to inhibit coronavirus infection; however, these results have not been validated through clinical trials. Therefore, it would be premature to draw any definitive conclusions about the effectiveness of G. lucidum in preventing or treating coronavirus infections in humans.

10.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36677944

ABSTRACT

Recent scientific studies have established a relationship between the consumption of phytochemicals such as carotenoids, polyphenols, isoprenoids, phytosterols, saponins, dietary fibers, polysaccharides, etc., with health benefits such as prevention of diabetes, obesity, cancer, cardiovascular diseases, etc. This has led to the popularization of phytochemicals. Nowadays, foods containing phytochemicals as a constituent (functional foods) and the concentrated form of phytochemicals (nutraceuticals) are used as a preventive measure or cure for many diseases. The health benefits of these phytochemicals depend on their purity and structural stability. The yield, purity, and structural stability of extracted phytochemicals depend on the matrix in which the phytochemical is present, the method of extraction, the solvent used, the temperature, and the time of extraction.


Subject(s)
Phytochemicals , Phytosterols , Phytochemicals/therapeutic use , Phytochemicals/chemistry , Polyphenols/therapeutic use , Polyphenols/chemistry , Dietary Supplements , Antioxidants/therapeutic use
11.
Foods ; 11(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36429279

ABSTRACT

In this study, UPLC-MS/MS was used to study the effects of smoking duration and temperature on the formation of heterocyclic amines (HAs) in smoke-processed meat patties. Four kinds of free HAs­including F-7,8-DiMeIQx; F-MeAαC; F-Harman and F-Norharman­and six kinds of protein-bound HAs­including B-AαC; B-7,8-DiMeIQx; B-Glu-p-1; B-MeAαC; B-Harman and B-Norharman­were detected and quantified. Among the free HAs, we observed a 23-fold content increase (p < 0.05), from 0−4 h (at 0 h and 4 h they were 4.24 ng·g−1 and 98.33 ng·g−1, respectively), and the content of the free HAs decreased to 78.80 ng·g−1, at 5 h. At the same time, the free HAs content increased from 53.52 ng·g−1, at 50 °C, to 127.16 ng·g−1, at 60 °C, and then decreased continuously. The content of the free HAs was the highest at 60 °C. For the protein-bound HAs, their content was found to generally decrease with the increase in smoking duration and temperature. However, at 5 h, the content of protein-bound HAs slightly increased to 984.2 ng·g−1. Meanwhile, at 90 °C, it increased to 1643.53 ng·g−1. Additionally, a total of 16 volatile organic compounds (VOCs) were found in all of the meat samples, of which 10 VOCs (one acid, three aldehydes and seven phenols) were significantly related to the formation of free HAs. These findings showed that all the different types of HAs were produced under low-temperature processing, which provided scientific insights into the potential generation of HAs during meat smoking processes and could be used as a reference to minimize the risks of cancer related to the consumption of smoked meat products.

12.
J Agric Food Chem ; 70(35): 10858-10871, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36007151

ABSTRACT

Although various inhibitors have been employed to react with phenylacetaldehyde to form adducts and thus interrupt the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), high concentrations of PhIP remain in the final system. It remains unknown whether other critical aldehyde or ketone intermediates are involved in the generation of PhIP, and scavenging these reactive carbonyls simultaneously may achieve higher inhibitory efficiency of PhIP. In this study, reactive carbonyls in a glucose/creatinine/phenylalanine model system were first identified by gas chromatography-mass spectrometry (GC-MS), and then the single and synergistic effects of nonprecursor amino acids (cysteine, methionine, proline, histidine, arginine, and leucine) on scavenging reactive carbonyls were investigated to find out promising combination partners. The obtained results showed that the concentrations of benzaldehyde and phenylacetaldehyde in the glucose/creatinine/phenylalanine model system reached 0.49 ± 0.01 and 6.22 ± 0.21 µg/mL, respectively. Heating these carbonyl compounds in the presence of creatinine resulted in the quantity of PhIP produced increasing linearly with the added quantity of benzaldehyde (r = 0.9733, P = 0.0002) and phenylacetaldehyde (r = 0.9746, P = 0.0002), indicating that both compounds are key intermediates for PhIP generation. Among the investigated amino acids, histidine produced the maximum inhibition of PhIP formation (78-99%) in the benzaldehyde/creatinine model system, and proline produced the maximum inhibition of PhIP formation (13-97%) in the phenylacetaldehyde/creatinine model system, where both compounds decreased PhIP formation in a dose-dependent manner. Histidine in combination with proline enhanced the inhibitory effect against PhIP formation at a low addition level, where the highest inhibitory efficiency was obtained using a 1:3 mass ratio of histidine to proline (2 mg/mL in total), reducing PhIP formation by 96%. These findings suggest that histidine-proline combinations can scavenge benzaldehyde and phenylacetaldehyde simultaneously, enhancing the suppression of PhIP formation.


Subject(s)
Amino Acids , Benzaldehydes , Acetaldehyde/analogs & derivatives , Amino Acids/chemistry , Benzaldehydes/pharmacology , Creatinine/chemistry , Glucose , Histidine , Imidazoles , Phenylalanine/chemistry , Proline , Pyridines
13.
Gels ; 8(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35877490

ABSTRACT

Worldwide aquaculture production is increasing, but with this increase comes quality and safety related problems. Hence, there is an urgent need to develop potent technologies to extend the shelf life of fish. Xanthan gum is commonly used in the food industry because of its high-water solubility, stability of its aqueous solutions in a wide pH range, and high viscosity. One of its modern food applications is its use as a gelling agent in edible coatings building. Therefore, in this study, the effect of xanthan coating containing various concentrations (0, 1, 2%; w/v) of ethanolic extract of propolis (EEP) on physicochemical, microbial, and sensory quality indices in mackerel fillets stored at 2 °C for 20 days was evaluated. The pH, peroxide value, K-value, TVB-N, TBARS, microbiological and sensory characteristics were determined every 5 days over the storage period (20 days). Samples treated with xanthan (XAN) coatings containing 1 and 2% of EEP were shown to have the highest level of physicochemical protection and maximum level of microbial inhibition (p < 0.05) compared to uncoated samples (control) over the storage period. Furthermore, the addition of EEP to XAN was more effective in notably preserving (p < 0.05) the taste and odor of coated samples compared to control.

14.
Molecules ; 27(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745026

ABSTRACT

In this study, the volatile compound profiles of gurum seed oil were determined using two methods: supercritical CO2 extraction (SFE) and the screw press process (SPP). For volatile compounds extraction and identification, headspace solid-phase micro-extraction (HS-SPME) and GC-MS were used, respectively. A total number of 56 volatile compounds were revealed and identified in oil extracted by SFE, while only 40 compounds were detected in extracted oil by SPP. Acids, aldehydes, esters, ketones, furans, and other components were present in the highest ratio in oil extracted by SFE. In contrast, alcohols and alkenes were found in the highest proportion in oil extracted by SPP. In this study, it was observed that SFE showed an increase in the amounts of volatile compounds and favorably impacted the aroma of gurum seed oil. The results reveal that different extraction methods significantly impact the volatile components of gurum seed oil, and this study can help evaluate the quality of the oil extracted from gurum seeds.


Subject(s)
Solid Phase Microextraction , Volatile Organic Compounds , Esters/analysis , Gas Chromatography-Mass Spectrometry/methods , Plant Oils , Seeds/chemistry , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis
15.
Antioxidants (Basel) ; 11(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35740088

ABSTRACT

Recently, the demand for composite edible coatings has increased significantly as a new trend to confront the serious processing and storage problems that always arise regarding chicken meat. We aim to develop a carboxymethyl cellulose (CMC) coating containing various concentrations (0, 1, 2, 3, and 4%) of an ethanolic propolis extract (EPE) to maintain the quality and extend the shelf life of chicken breast meat stored at 2 °C for 16 days. The influence of the CMC and EPE coating on the physicochemical and microbiological quality parameters of chicken breast meat, e.g., pH, color, metmyoglobin (MetMb), lipid oxidation (thiobarbituric acid reactive substance, TBARS), and microbiological and sensory analyses, was studied. Significantly lower weight loss and pH (p ≤ 0.05) were noted in the coated samples compared with the uncoated samples (control) over the storage period. MetMb content was significantly reduced (p ≤ 0.05) in the coated samples compared to the control. Additionally, the addition of EPE to CMC was more effective in inhibiting microbial growth, preventing lipid oxidation, and keeping the overall acceptability of coated chicken breast meat compared to the control. This work presents CMC and EPE as alternative preservatives to produce active packaging coatings.

16.
Foods ; 11(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35627051

ABSTRACT

Dichloroanilines and phthalic acid esters (phthalates) are food contaminants, stable in solution even at high temperatures, which exhibit considerable toxic effects, while acting as endocrine disruptors. In the present study, a quick and easy UHPLC-MS/MS method for simultaneously analyzing two dichloroanilines (3,4-DCA and 3,5-DCA) and six phthalates (DMP, DnBP, BBP, DnOP, DEHP, and mBP) in commercial rice samples was developed, validated, and applied. For the cleanup process, the methodology of quick, easy, cheap, effective, rugged, and safe (QuEChERS) was applied, whereas different dispersants (GCB, C18, and PSA) were tested. What was developed and presented had limits of detection ranging from 0.017 up to 0.12 mg/kg, recoveries (trueness) below 120%, and relative standard deviations (RSD; precision) <15% for all target analytes, whilst no significant matrix effects occurred for all analytes. It was determined that the rice samples analyzed using this developed technique did not contain any of the two dichloroaniline compounds (3,4-DCA and 3,5-DCA) nor two of the six phthalate (DMP and mBP) compounds analyzed, while the levels of other phthalates (DEHP, BBP, DnBP and DnOP) were within the legal limits. The current method ensures a fast and easy approach for the high-throughput quantification of the selected food contaminants in rice.

17.
Foods ; 11(7)2022 03 22.
Article in English | MEDLINE | ID: mdl-35406986

ABSTRACT

An analytical method was developed to simultaneously determine pyridate, quizalofop-ethyl, and cyhalofop-butyl in brown rice, soybean, potato, pepper, and mandarin using LC-MS/MS. Purification was optimized using various sorbents: primary−secondary amine, octadecyl (C18) silica gel, graphitized carbon black, zirconium dioxide-modified silica particles, zirconium dioxide-modified silica particles (Z-SEP), and multi-walled carbon nanotubes (MWCNTs). Three versions of QuECHERS methods were then tested using the optimal purification agent. Finally, samples were extracted using acetonitrile and QuEChERS EN salts and purified using the Z-SEP sorbent. A six-point matrix-matched external calibration curve was constructed for the analytes. Good linearity was achieved with a determination coefficient ≥0.999. The limits of detection and quantification were 0.0075 mg/kg and 0.01 mg/kg, respectively. The method was validated after fortifying the target standards to the blank matrices at three concentration levels with five replicates for each concentration. The average recovery was within an acceptable range (70−120%), with a relative standard deviation <20%. The applicability of the developed method was evaluated with real-world market samples, all of which tested negative for these three herbicide residues. Therefore, this method can be used for the routine analysis of pyridate, quizalofop-ethyl, and cyhalofop-butyl in agricultural products.

18.
Foods ; 11(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-37431000

ABSTRACT

Herein, the effect of the dipping (static) marination process (at 4 °C for 2 h) with different types of vinegar (balsamic, pomegranate, apple, and grape) on various quality properties, including texture and protein profile of beef steaks and the formation of heterocyclic aromatic amines (HAAs) in beef steaks cooked on a hot plate (at 200 °C for 24 min), were determined. The results showed that 3.12-4.13% of the marinate liquids were absorbed by beef steak as a result of the marination process. No significant differences (p > 0.05) were observed between the marinated and cooked beef steaks in terms of water content, cooking loss, thiobarbituric acid reactive substances (TBARS) value, hardness, cohesiveness, and chewiness. However, significant differences were detected in terms of pH value and color values (L*, a*, and b*) (p < 0.01), and springiness, 2-amino-3,8-dimethylimidazo (4,5-f) quinoxaline (MeIQx) and total HAA content (p < 0.05). The marination with pomegranate vinegar resulted in the formation of darker steak, while a lighter one was obtained when apple vinegar was used in the marination. The use of balsamic and grape vinegar in the marination process decreased the springiness value compared to the control group. The myofibrillar proteins of beef steaks marinated with different types of vinegar generally showed a similar sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) profile. However, some differences were observed in the band density of some proteins depending on the trial and the type of marination. In this study, of the nine examined HAAs, only two (2-amino-3-methylimidazo (4,5-f) quinoline (IQ) and MeIQx) could be detected and quantified. IQ was detected only in the control group steak (up to 0.51 ng/g), while MeIQx was detected in all treatment groups (up to 2.22 ng/g). The total HAA content varied between 0.59-2.22 ng/g. It was determined that the marination process with different vinegar types had different effects on the total HAA content of the steaks. Using balsamic and apple vinegar in the marination process decreased the total HAA content compared to the control group, but this decrease was not statistically significant (p > 0.05). On the other hand, using grape and pomegranate vinegar in the marination process increased the total HAA content, but this increase was only significant (p < 0.05) in the marination with pomegranate vinegar.

19.
J Food Sci Technol ; 58(7): 2806-2814, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34194114

ABSTRACT

In the study, the effects of nitrate and/or nitrite (150 mg/kg KNO3, 300 mg/kg KNO3, 150 mg/kg NaNO2, and 150 mg/kg KNO3 + 150 mg/kg NaNO2) on proteolytic changes (free amino acid composition, SDS-PAGE) in pastirma were investigated. Pastirma samples were also analyzed in terms of some qualitative (pH, aw, TBARS, residual nitrite, salt) properties. The lowest total free amino acid content (1818.3 mg/ 100 g DM) was observed in the combination of 150 mg/kg KNO3 + 150 mg/kg NaNO2, while the highest content (2847.49 mg/ 100 g DM) was observed in 150 mg/kg KNO3. Although the pastirma groups generally exhibited similar SDS-PAGE profiles, differences were detected at some band intensities. The lowest TBARS value (22.24 µmol MDA/kg) was observed in 150 mg/kg KNO3 + 150 mg/kg NaNO2. As a result, the use of 150 mg/kg KNO3 in the pastirma curing process causes more intense proteolysis.

20.
Food Chem ; 365: 130484, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34237578

ABSTRACT

The effect and elimination pathway of proline on reducing PhIP and the effect of processing temperature, duration, and proline addition on the PhIP-proline adduct and its precursors were investigated. The results have demonstrated that PhIP and proline could condense to produce the adduct by direct heating, which could also be detected in the PhIP-producing model system and in beef patties with proline. The analytical method was optimized and has a good limit of detection (0.006-73 ng/mL), limit of quantification (0.021-245 ng/mL), recovery rate (about 80%-120%), and precision (below 15%). A high dose of proline (5.0%, w/w) promoted the formation of the adduct and reduction of PhIP; long heating duration and high temperature were not conducive to the formation of the adduct in beef patties. With increased addition of proline, creatine and creatinine decreased in a dose-dependent manner; phenylalanine and glucose did not show the same trend.


Subject(s)
Proline , Tandem Mass Spectrometry , Animals , Cattle , Chromatography, High Pressure Liquid , Chromatography, Liquid , Imidazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...