Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
J Oral Biosci ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38579987

ABSTRACT

OBJECTIVES: Periodontitis, commonly associated with Porphyromonas gingivalis (Pg), involves intricate alterations of oral intercellular interactions, in which extracellular vesicles (EVs) play a pivotal role. The understanding of the miRNA profiles in the EVs derived from Pg-infected cells (Pg-EVs) remains incomplete despite acknowledging their importance in intercellular communication during periodontitis. Therefore, our objective was to identify and characterize the miRNAs enriched in Pg-EVs. METHODS: Microarray analysis was conducted to examine the miRNA profiles in the EVs derived from Pg-infected THP-1 cells. We compared the identified miRNAs with those upregulated in the EVs after stimulation with LPS. Additionally, we explored how inhibiting TLR signaling during Pg infection affects the transcription of specific miRNAs. We investigated the unique sequence motifs specific to the miRNAs concentrated in Pg-EVs. RESULTS: The levels of eleven miRNAs, including miR-155, were increased in Pg-EVs compared with those elevated after LPS stimulation. The Pg-induced miR-155 upregulation via TLR2 but not TLR4 signaling suggests the influence of TLR signaling on the miRNA composition of EVs. Furthermore, the miRNAs upregulated in Pg-EVs contained AGAGGG and GRGGSGC sequence motifs. CONCLUSIONS: Our findings demonstrate that Pg-induced alterations in EV-containing miRNA composition occur in a TLR4-independent manner. Notably, the concentrated miRNAs in Pg-EVs harbor specific motifs with a high G + C content within their sequences. The upregulation of specific miRNAs in EVs under infectious conditions suggests the influence of both innate immune receptor signals and miRNA sequence characteristics.

2.
Mol Biol Rep ; 51(1): 222, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281189

ABSTRACT

BACKGROUND: Cardamonin is classified as a natural chalcone, and has been reported to possess various bioactive effects. However, there have been limited attempts to utilize cardamonin in the treatment of periodontitis. This study aimed to investigate whether cardamonin has anti-inflammatory effects on human periodontal ligament cells (HPDLCs), which are a component cell of periodontal tissue. Specifically, the study seeks to determine whether cardamonin affects the expression of inflammatory mediators, such as cytokines and adhesion molecules, induced by interleukin-1ß (IL-1ß) in HPDLCs, as well as the signaling pathways activated by IL-1ß. METHODS: Cytokine and chemokine levels in supernatants of HPDLCs were measured by ELISA. Western blot analysis was used to measure protein expression and signal transduction pathway activation in HPDLCs. RESULTS: We found that IL-1ß-induced CC chemokine ligand (CCL)2, CCL5, CCL20, CXC-chemokine ligand (CXCL)10, and interleukin (IL)-6 production and intercellular adhesion molecule (ICAM)-1 and cyclooxygenase (COX)-2 expression in HPDLCs were suppressed by cardamonin treatment. We also found that cardamonin suppressed IL-1ß-activated nuclear factor (NF)-κB pathway, and the phosphorylation of signal transducer and activator of transcription (STAT)3. Furthermore, cardamonin treatment enhanced the expression of the antioxidant enzymes, heme oxygenase (HO)-1 and NAD(P)H dehydrogenase [quinone] 1 (NQO1), in HPDLCs. CONCLUSION: In this study, we found that cardamonin could suppress the production of inflammatory mediators in HPDLCs as well as the activation of several signaling pathways induced by IL-1ß treatment.


Subject(s)
Chalcones , Humans , Chalcones/pharmacology , Interleukin-1beta/metabolism , Periodontal Ligament/metabolism , Ligands , NF-kappa B/metabolism , Cytokines/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Chemokines/metabolism , Inflammation Mediators/metabolism , Cells, Cultured
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2233-2240, 2024 04.
Article in English | MEDLINE | ID: mdl-37804343

ABSTRACT

Berteroin is a bioactive substance classified as an isothiocyanate found in cruciferous vegetables such as cabbage, arugula, and salad leaves. In this study, we aimed to determine whether berteroin exerts anti-inflammatory effects on human periodontal ligament cells (HPDLCs), a resident cells of periodontal tissue. Berteroin suppressed interleukin (IL)-1ß or tumor necrosis factor (TNF)-α-induced chemokines (C-C motif chemokine ligand (CCL)2, CCL20, C-X-C motif chemokine ligand (CXCL)10, IL-8, and IL-6) production and intercellular adhesion molecule (ICAM)-1 expression in HPDLCs. In addition, berteroin inhibited phosphorylation of IκB kinase (IKK)- α/ ß, nuclear factor (NF)- κB p65, and IκB- α and degradation of IκB- α in the NF-κB pathway induced by IL-1 ß or TNF- α stimulation. Moreover, berteroin could inhibit signal transducer and activator of transcription (STAT)3 phosphorylation in TNF- α -stimulated HPDLC. Furthermore, berteroin increased the expression of the antioxidant enzymes, heme oxygenase (HO)-1 and NAD(P)H quinone dehydrogenase (NQO)1, in IL-1 ß or TNF- α -stimulated HPDLCs. These results suggest that berteroin may decrease the production of inflammatory mediators in HPDLCs by suppressing the NF-κB pathway, and may also decrease the local reactive oxygen species (ROS) production in periodontal lesions by increasing the production of antioxidant enzymes.


Subject(s)
NF-kappa B , Signal Transduction , Humans , NF-kappa B/metabolism , Antioxidants/pharmacology , Interleukin-1beta/metabolism , Inflammation Mediators/metabolism , Periodontal Ligament/metabolism , Ligands , Isothiocyanates/pharmacology , Chemokines/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Immunopharmacol Immunotoxicol ; 46(1): 49-54, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37624680

ABSTRACT

OBJECTIVES: Periodontitis is a chronic inflammatory disease induced by periodontal disease-causing bacteria. It has been shown that excessive immune response against bacteria is involved in periodontal tissue destruction including alveolar bone resorption. Erucin is a biologically active substance found in cruciferous plants such as arugula and is classified as an isothiocyanate. No previous studies have attempted to use erucin in the treatment of periodontitis, and there are no papers that have examined the effects of erucin on periodontal resident cells. The purpose of this study was to analyze the effects of erucin on the production of inflammatory and antioxidant mediators produced by tumor necrosis factor (TNF)-α-stimulated TR146 cells, an oral epithelial cell line, including its effects on signaling molecules. METHODS: Cytokine and chemokine levels were measured by ELISA. Protein expression in TR146 cells and activations of signal transduction pathway were determined by Western blotting. RESULTS: Our results indicate that erucin suppresses interleukin-6 and CXC-chemokine ligand 10 production and vascular cell adhesion molecule-1 expression in TNF-α-stimulated TR146 cells. In addition, erucin induced the production of the antioxidant enzymes, Heme Oxygenase-1 and NAD(P)H quinone dehydrogenase 1 in TR146 cells. Furthermore, erucin suppressed TNF-α-stimulated nuclear factor-κB, signal transducer and activator of transcription3, and phospho-70S6 Kinase-S6 ribosomal protein signaling pathways in TR146 cells. We have shown that erucin has anti-inflammatory effects on oral epithelial cells and also induces the production of antioxidant mediators. CONCLUSIONS: These results suggest that erucin may provide a new anti-inflammatory agent that can be used in the treatment of periodontitis.


Subject(s)
Periodontitis , Sulfides , Thiocyanates , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Inflammation Mediators/metabolism , Epithelial Cells , NF-kappa B/metabolism , Chemokines/metabolism , Periodontitis/drug therapy , Periodontitis/metabolism
5.
Geobiology ; 21(6): 689-707, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37622474

ABSTRACT

Iron (Fe) is an essential element for life, and its geochemical cycle is intimately linked to the coupled history of life and Earth's environment. The accumulated geologic records indicate that ferruginous waters existed in the Precambrian oceans not only before the first major rise of atmospheric O2 levels (Great Oxidation Event; GOE) during the Paleoproterozoic, but also during the rest of the Proterozoic. However, the interactive evolution of the biogeochemical cycles of O2 and Fe during the Archean-Proterozoic remains ambiguous. Here, we develop a biogeochemical model to investigate the coupled biogeochemical evolution of Fe-O2 -P-C cycles across the GOE. Our model demonstrates that the marine Fe cycle was less sensitive to changes in the production rate of O2 before the GOE (atmospheric pO2 < 10-6 PAL; present atmospheric level). When the P supply rate to the ocean exceeds a certain threshold, the GOE occurs and atmospheric pO2 rises to ~10-3 -10-1 PAL. After the GOE, the marine Fe(II) concentration is highly sensitive to atmospheric pO2 , suggesting that the marine redox landscape during the Proterozoic may have fluctuated between ferruginous conditions and anoxic non-ferruginous conditions with sulfidic water masses around continental margins. At a certain threshold value of atmospheric pO2 of ~0.3% PAL, the primary oxidation pathway of Fe(II) shifts from the activity of Fe(II)-utilizing anoxygenic photoautotrophs in sunlit surface waters to abiotic process in the deep ocean. This is accompanied by a shift in the primary deposition site of Fe(III) hydroxides from the surface ocean to the deep sea, providing a plausible mechanistic explanation for the observed cessation of iron formations during the Proterozoic.

6.
Ecotoxicol Environ Saf ; 260: 115089, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37271104

ABSTRACT

Perfluorooctanoic acid (PFOA) is an artificial fluorinated organic compound that has generated increased public attention due to its potential health hazards. Unsafe levels of PFOA exposure can affect reproduction, growth and development. During tooth enamel development (amelogenesis), environmental factors including fluoride can cause enamel hypoplasia. However, the effects of PFOA on ameloblasts and tooth enamel formation remain largely unknown. In the present study we demonstrate several PFOA-mediated cell death pathways (necrosis/necroptosis, and apoptosis) and assess the roles of ROS-MAPK/ERK signaling in PFOA-mediated cell death in mouse ameloblast-lineage cells (ALC). ALC cells were treated with PFOA. Cell proliferation and viability were analyzed by MTT assays and colony formation assays, respectively. PFOA suppressed cell proliferation and viability in a dose dependent manner. PFOA induced both necrosis (PI-positive cells) and apoptosis (cleaved-caspase-3, γH2AX and TUNEL-positive cells). PFOA significantly increased ROS production and up-regulated phosphor-(p)-ERK. Addition of ROS inhibitor N-acetyl cysteine (NAC) suppressed p-ERK and decreased necrosis, and increased cell viability compared to PFOA alone, whereas NAC did not change apoptosis. This suggests that PFOA-mediated necrosis was induced by ROS-MAPK/ERK signaling, but apoptosis was not associated with ROS. Addition of MAPK/ERK inhibitor PD98059 suppressed necrosis and increased cell viability compared to PFOA alone. Intriguingly, PD98059 augmented PFOA-mediated apoptosis. This suggests that p-ERK promoted necrosis but suppressed apoptosis. Addition of the necroptosis inhibitor Necrostatin-1 restored cell viability compared to PFOA alone, while pan-caspase inhibitor Z-VAD did not mitigate PFOA-mediated cell death. These results suggest that 1) PFOA-mediated cell death was mainly caused by necrosis/necroptosis by ROS-MAPK/ERK signaling rather than apoptosis, 2) MAPK/ERK signaling plays the dual roles (promoting necrosis and suppressing apoptosis) under PFOA treatment. This is the initial report to indicate that PFOA could be considered as a possible causative factor for cryptogenic enamel malformation. Further studies are required to elucidate the mechanisms of PFOA-mediated adverse effects on amelogenesis.


Subject(s)
Ameloblasts , Mice , Animals , Reactive Oxygen Species/metabolism , Ameloblasts/metabolism , Cell Death , Necrosis
7.
Geobiology ; 21(5): 537-555, 2023 09.
Article in English | MEDLINE | ID: mdl-36960595

ABSTRACT

The advent of oxygenic photosynthesis represents the most prominent biological innovation in the evolutionary history of the Earth. The exact timing of the evolution of oxygenic photoautotrophic bacteria remains elusive, yet these bacteria profoundly altered the redox state of the ocean-atmosphere-biosphere system, ultimately causing the first major rise in atmospheric oxygen (O2 )-the so-called Great Oxidation Event (GOE)-during the Paleoproterozoic (~2.5-2.2 Ga). However, it remains unclear how the coupled atmosphere-marine biosphere system behaved after the emergence of oxygenic photoautotrophs (OP), affected global biogeochemical cycles, and led to the GOE. Here, we employ a coupled atmospheric photochemistry and marine microbial ecosystem model to comprehensively explore the intimate links between the atmosphere and marine biosphere driven by the expansion of OP, and the biogeochemical conditions of the GOE. When the primary productivity of OP sufficiently increases in the ocean, OP suppresses the activity of the anaerobic microbial ecosystem by reducing the availability of electron donors (H2 and CO) in the biosphere and causes climate cooling by reducing the level of atmospheric methane (CH4 ). This can be attributed to the supply of OH radicals from biogenic O2 , which is a primary sink of biogenic CH4 and electron donors in the atmosphere. Our typical result also demonstrates that the GOE is triggered when the net primary production of OP exceeds >~5% of the present oceanic value. A globally frozen snowball Earth event could be triggered if the atmospheric CO2 level was sufficiently small (<~40 present atmospheric level; PAL) because the concentration of CH4 in the atmosphere would decrease faster than the climate mitigation by the carbonate-silicate geochemical cycle. These results support a prolonged anoxic atmosphere after the emergence of OP during the Archean and the occurrence of the GOE and snowball Earth event during the Paleoproterozoic.


Subject(s)
Ecosystem , Oxygen , Photosynthesis , Atmosphere , Oxidation-Reduction
8.
Oral Dis ; 29(8): 3688-3697, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36266256

ABSTRACT

OBJECTIVE: Porphyromonas gingivalis (Pg) is thought to be involved in the progression of Alzheimer's disease (AD). Whether Pg or its contents can reach the brain and directly affect neuropathology is, however, unknown. Here, we investigated whether outer membrane vesicles (OMVs) of Pg translocate to the brain and induce the pathogenic features of AD. MATERIAL AND METHODS: Pg OMVs were injected into the abdominal cavity of mice for 12 weeks. Pg OMV translocation to the brain was detected by immunohistochemistry using an anti-gingipain antibody. Tau protein and microglial activation in the mouse brain were examined by western blotting and immunohistochemistry. The effect of gingipains on inflammation was assessed by real-time polymerase chain reaction using human microglial HMC3 cells. RESULTS: Gingipains were detected in the region around cerebral ventricles, choroid plexus, and ventricular ependymal cells in Pg OMV-administered mice. Tau and phosphorylated Tau protein increased and microglia were activated. Pg OMVs also increased the gene expression of proinflammatory cytokines in HMC3 cells in a gingipain-dependent manner. CONCLUSION: Pg OMVs, including gingipains, can reach the cerebral ventricle and induce neuroinflammation by activating microglia. Pg OMVs may provide a better understanding of the implications of periodontal diseases in neurodegenerative conditions such as AD.


Subject(s)
Alzheimer Disease , Microglia , Humans , Animals , Mice , Gingipain Cysteine Endopeptidases , tau Proteins , Porphyromonas gingivalis , Cerebral Ventricles
9.
Biomedicines ; 10(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36551911

ABSTRACT

Iberin is a bioactive chemical found in cruciferous plants that has been demonstrated to have anticancer properties. However, there have been no reports on its effects on periodontal resident cells, and many questions remain unanswered. The aim of this study was to examine whether iberin had anti-inflammatory effects on human oral epithelial cells, including influences on signal transduction pathway activation in TNF-α-στιµυλατεd χελλσ. Iberin inhibited the production of interleukin (IL)-6 and C-X-C motif chemokine ligand 10 (CXCL10), as well as the expression of vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 in tumor necrosis factor (TNF)-α-stimulated TR146 cells, a human oral epithelial cell line. Moreover, iberin administration increased the expression of antioxidant signaling pathways, such as Heme Oxygenase (HO)-1 and NAD(P)H quinone dehydrogenase 1 (NQO1). Furthermore, we found that iberin could inhibit the activation of the nuclear factor (NF)-κB, signal transducer and activator of transcription (STAT)3, and p70S6 kinase (p70S6K)-S6 ribosomal protein (S6) pathways in TNF-α-stimulated TR146 cells. In conclusion, iberin reduced inflammatory mediator expression in human oral epithelial cells by preventing the activation of particular signal transduction pathways.

10.
Curr Issues Mol Biol ; 44(7): 2915-2922, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35877425

ABSTRACT

6-(Methylsulfinyl) hexyl isothiocyanate (6-MSITC) is a bioactive substance found in wasabi (Wasabia japonica) and has been reported to have some bioactive effects including anticancer and antioxidant effects. However, there are no reports on its effects on periodontal resident cells, and many points remain unclear. In this study, we aimed to investigate whether 6-MSITC exerts anti-inflammatory effects on human oral epithelial cells, including effects on signal transduction pathway activation. 6-MSITC inhibited interleukin (IL)-6 and C-X-C motif chemokine ligand 10 (CXCL10) production in TNF-α-stimulated TR146 cells, which are a human oral epithelial cell line. Moreover, we found that 6-MSITC could suppress signal transducer and activator of transcription (STAT)3, nuclear factor (NF)-κB, and p70S6 kinase (p70S6K)-S6 ribosomal protein (S6) pathways activation in TNF-α-stimulated TR146 cells. Furthermore, STAT3 and NF-κB inhibitors could suppress IL-6 and CXCL10 production in TNF-α-treated TR146 cells. In summary, 6-MSITC could decrease IL-6 and CXCL10 production in human oral epithelial cell by inhibiting STAT3 and NF-κB activation.

11.
JMIR Form Res ; 6(5): e35991, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35536638

ABSTRACT

BACKGROUND: An accurate evaluation of the nutritional status of malnourished hospitalized patients at a higher risk of complications, such as frailty or disability, is crucial. Visual methods of estimating food intake are popular for evaluating the nutritional status in clinical environments. However, from the perspective of accurate measurement, such methods are unreliable. OBJECTIVE: The accuracy of estimating leftover liquid food in hospitals using an artificial intelligence (AI)-based model was compared to that of visual estimation. METHODS: The accuracy of the AI-based model (AI estimation) was compared to that of the visual estimation method for thin rice gruel as staple food and fermented milk and peach juice as side dishes. A total of 576 images of liquid food (432 images of thin rice gruel, 72 of fermented milk, and 72 of peach juice) were used. The mean absolute error, root mean squared error, and coefficient of determination (R2) were used as metrics for determining the accuracy of the evaluation process. Welch t test and the confusion matrix were used to examine the difference of mean absolute error between AI and visual estimation. RESULTS: The mean absolute errors obtained through the AI estimation approach were 0.63 for fermented milk, 0.25 for peach juice, and 0.85 for the total. These were significantly smaller than those obtained using the visual estimation approach, which were 1.40 (P<.001) for fermented milk, 0.90 (P<.001) for peach juice, and 1.03 (P=.009) for the total. By contrast, the mean absolute error for thin rice gruel obtained using the AI estimation method (0.99) did not differ significantly from that obtained using visual estimation (0.99). The confusion matrix for thin rice gruel showed variation in the distribution of errors, indicating that the errors in the AI estimation were biased toward the case of many leftovers. The mean squared error for all liquid foods tended to be smaller for the AI estimation than for the visual estimation. Additionally, the coefficient of determination (R2) for fermented milk and peach juice tended to be larger for the AI estimation than for the visual estimation, and the R2 value for the total was equal in terms of accuracy between the AI and visual estimations. CONCLUSIONS: The AI estimation approach achieved a smaller mean absolute error and root mean squared error and a larger coefficient of determination (R2) than the visual estimation approach for the side dishes. Additionally, the AI estimation approach achieved a smaller mean absolute error and root mean squared error compared to the visual estimation method, and the coefficient of determination (R2) was similar to that of the visual estimation method for the total. AI estimation measures liquid food intake in hospitals more precisely than visual estimation, but its accuracy in estimating staple food leftovers requires improvement.

12.
Mediators Inflamm ; 2021: 5535844, 2021.
Article in English | MEDLINE | ID: mdl-34335088

ABSTRACT

Nobiletin, a biologically active substance in the skin of citrus fruits, has been reported to be an effective anti-inflammatory, anticancer, and antimicrobial agent. In this study, we aimed to examine the anti-inflammatory effects of nobiletin on tumor necrosis factor- (TNF-) stimulated human periodontal ligament cells (HPDLCs). Our results demonstrated that nobiletin treatment could decrease the expressions of inflammatory cytokines (C-X-C motif chemokine ligand (CXCL)10, C-C motif chemokine ligand (CCL)2, and interleukin- (IL-) 8), matrix metalloproteinases (MMPs) (MMP1 and MMP3), and prostaglandin-endoperoxide synthase 2 (PTGS2) in TNF-stimulated HPDLCs. Moreover, we revealed that nobiletin could inhibit the activation of nuclear factor- (NF-) κB and protein kinase B (AKT1) pathways in TNF-stimulated HPDLCs. Furthermore, nobiletin treatment enhanced nuclear factor, erythroid 2 like 2 (NFE2L2) and heme oxygenase 1 (HMOX1) expressions in TNF-stimulated HPDLCs. In conclusion, these findings suggest that nobiletin can inhibit inflammatory responses in TNF-stimulated HPDLCs by inhibiting NF-κB and AKT1 activations and upregulating the NFE2L2 and HMOX1 expression.


Subject(s)
Flavones , Periodontal Ligament , Flavones/metabolism , Flavones/pharmacology , Humans , Inflammation Mediators/metabolism , NF-kappa B/metabolism , Periodontal Ligament/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166236, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34389473

ABSTRACT

Periodontal diseases are common inflammatory diseases that are induced by infection with periodontal bacteria such as Porphyromonas gingivalis (Pg). The association between periodontal diseases and many types of systemic diseases has been demonstrated; the term "periodontal medicine" is used to describe how periodontal infection/inflammation may impact extraoral health. However, the molecular mechanisms by which the factors produced in the oral cavity reach multiple distant organs and impact general health have not been elucidated. Extracellular vesicles (EVs) are nano-sized spherical structures secreted by various types of cells into the tissue microenvironment, and influence pathophysiological conditions by delivering their cargo. However, a detailed understanding of the effect of EVs on periodontal medicine is lacking. In this study, we investigated whether EVs derived from Pg-infected macrophages reach distant organs in mice and influence the pathophysiological status. EVs were isolated from human macrophages, THP-1 cells, infected with Pg. We observed that EVs from Pg-infected THP-1 cells (Pg-inf EVs) contained abundant core histone proteins such as histone H3 and translocated to the lungs, liver, and kidneys of mice. Pg-inf EVs also induced pulmonary injury, including edema, vascular congestion, inflammation, and collagen deposition causing alveoli destruction. The Pg-inf EVs or the recombinant histone H3 activated the NF-κB pathway, leading to increase in the levels of pro-inflammatory cytokines in human lung epithelial A549 cells. Our results suggest a possible mechanism by which EVs produced in periodontal diseases contribute to the progression of periodontal medicine.


Subject(s)
Extracellular Vesicles/immunology , Lung Injury/immunology , Macrophages/immunology , Periodontitis/complications , Porphyromonas gingivalis/immunology , A549 Cells , Animals , Bacteroidaceae Infections , Disease Models, Animal , Extracellular Vesicles/metabolism , Female , Humans , Lung Injury/pathology , Macrophages/cytology , Macrophages/metabolism , Mice , Periodontitis/immunology , Periodontitis/microbiology , Porphyromonas gingivalis/pathogenicity , THP-1 Cells
14.
Sci Rep ; 11(1): 14943, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294795

ABSTRACT

The ability of cancer cells to undergo partial-epithelial mesenchymal transition (p-EMT), rather than complete EMT, poses a higher metastatic risk. Although Fusobacterium nucleatum mainly inhabits in oral cavity, attention has been focused on the F. nucleatum involvement in colorectal cancer development. Here we examined the p-EMT regulation by F. nucleatum in oral squamous cell carcinoma (OSCC) cells. We cultured OSCC cells with epithelial, p-EMT or EMT phenotype with live or heat-inactivated F. nucleatum. Expression of the genes involved in epithelial differentiation, p-EMT and EMT were examined in OSCC cells after co-culture with F. nucleatum by qPCR. Cell growth and invasion of OSCC cells were also examined. Both live and heat-inactivated F. nucleatum upregulated the expression of p-EMT-related genes in OSCC cells with epithelial phenotype, but not with p-EMT or EMT phenotype. Moreover, F. nucleatum promoted invasion of OSCC cells with epithelial phenotype. Co-culture with other strains of bacteria other than Porphyromonas gingivalis did not alter p-EMT-related genes in OSCC cells with epithelial phenotype. F. nucleatum infection may convert epithelial to p-EMT phenotype via altering gene expression in OSCC. Oral hygiene managements against F. nucleatum infection may contribute to reduce the risk for an increase in metastatic ability of OSCC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/virology , Fusobacterium Infections/complications , Fusobacterium nucleatum/pathogenicity , Mouth Neoplasms/virology , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Fusobacterium Infections/genetics , Gene Expression Regulation, Neoplastic , Humans , Mouth Neoplasms/genetics , Neoplasm Metastasis , Oral Hygiene
15.
Pharmaceutics ; 13(5)2021 May 07.
Article in English | MEDLINE | ID: mdl-34066937

ABSTRACT

The immune response in periodontal lesions is involved in the progression of periodontal disease. Therefore, it is important to find a bioactive substance that has anti-inflammatory effects in periodontal lesions. This study aimed to examine if nobiletin, which is found in the peel of citrus fruits, could inhibit inflammatory responses in interleukin (IL)-1ß-stimulated human periodontal ligament cells (HPDLCs). The release of cytokines (IL-6, IL-8, CXCL10, CCL20, and CCL2) and matrix metalloproteinases (MMP-1 and MMP-3) was assessed by ELISA. The expression of cell adhesion molecules (ICAM-1and VCAM-1) and the activation of signal transduction pathways (nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt)) in HPDLCs were detected by Western blot analysis. Our experiments revealed that nobiletin decreased the expression of inflammatory cytokines, cell adhesion molecules, and MMPs in IL-1ß-stimulated HPDLCs. Moreover, we revealed that nobiletin treatment could suppress the activation of the NF-κB, MAPKs, and Akt pathways. These findings indicate that nobiletin could inhibit inflammatory reactions in IL-1ß-stimulated HPDLCs by inhibiting multiple signal transduction pathways, including NF-κB, MAPKs, and Akt.

16.
Biomed Res Int ; 2021: 8826586, 2021.
Article in English | MEDLINE | ID: mdl-33575345

ABSTRACT

Sudachitin, which is a polymethoxylated flavonoid found in the peel of Citrus sudachi, has some biological activities. However, the effect of sudachitin on periodontal resident cells is still uncertain. The aim of this study was to examine if sudachitin could decrease the expression of inflammatory mediators such as cytokines, chemokines, or matrix metalloproteinase (MMP) in interleukin- (IL-) 1ß-stimulated human periodontal ligament cells (HPDLC). Sudachitin inhibited IL-1ß-induced IL-6, IL-8, CXC chemokine ligand (CXCL)10, CC chemokine ligand (CCL)2, MMP-1, and MMP-3 production in HPDLC. On the other hand, tissue inhibitor of metalloproteinase- (TIMP-) 1 expression was increased by sudachitin treatment. Moreover, we found that the nuclear factor- (NF-) κB and protein kinase B (Akt) pathways in the IL-1ß-stimulated HPDLC were inhibited by sudachitin treatment. These findings indicate that sudachitin is able to reduce inflammatory mediator production in IL-1ß-stimulated HPDLC by inhibiting NF-κB and Akt pathways.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Flavonoids/administration & dosage , Glycosides/administration & dosage , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Periodontal Ligament/drug effects , Periodontal Ligament/metabolism , Humans , Signal Transduction/drug effects
17.
Int J Mol Sci ; 21(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867334

ABSTRACT

Chronic inflammation caused by infections has been suggested to be one of the most important cause of cancers. It has recently been shown that there is correlation between intestinal bacteria and cancer development including metastasis. As over 700 bacterial species exist in an oral cavity, it has been concerning that bacterial infection may cause oral cancer. However, the role of bacteria regarding tumorigenesis of oral cancer remains unclear. Several papers have shown that Fusobacterium species deriving the oral cavities, especially, play a crucial role for the development of colorectal and esophageal cancer. F. nucleatum is a well-known oral bacterium involved in formation of typical dental plaque on human teeth and causing periodontal diseases. The greatest characteristic of F. nucleatum is its ability to adhere to various bacteria and host cells. Interestingly, F. nucleatum is frequently detected in oral cancer tissues. Moreover, detection of F. nucleatum is correlated with the clinical stage of oral cancer. Although the detailed mechanism is still unclear, Fusobacterium species have been suggested to be associated with cell adhesion, tumorigenesis, epithelial-to-mesenchymal transition, inflammasomes, cell cycle, etc. in oral cancer. In this review, we introduce the reports focused on the association of Fusobacterium species with cancer development and progression including oral, esophageal, and colon cancers.


Subject(s)
Colonic Neoplasms/microbiology , Esophageal Neoplasms/microbiology , Fusobacterium Infections/complications , Fusobacterium/pathogenicity , Mouth Neoplasms/microbiology , Cell Adhesion , Disease Progression , Epithelial-Mesenchymal Transition , Fusobacterium/classification , Humans , Inflammasomes/metabolism , Mouth/microbiology
18.
Sci Rep ; 10(1): 11984, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32704030

ABSTRACT

Earth's orbital variations on timescales of 104-105 years, known as Milankovitch cycles, have played a critical role in pacing climate change and ecosystem dynamics, through glacial and/or monsoon dynamics. However, the climatic and biotic consequences of these cycles on much longer (~ 107 years) timescales remain unclear, due to a lack of long proxy records with precise age constraints. Here, we show ~ 10-Myr scale variations in early Mesozoic (250-180 Ma) records of lake-level, desert distribution, biogenic-silica burial flux, atmospheric CO2 levels (pCO2), and sea-surface-temperature (SST). Their phase relationships, coupled with carbon cycle modeling results, suggest that orbitally-paced summer monsoon dynamics modulates changes in terrestrial weatherability by ~ 20%, affecting changes in pCO2 of up to 500-1,000 ppmv and 3-7 °C SST. We also infer that these ~ 10-Myr scale climatic variations could have been causally linked to biotic turnover, size variations in dinosaur footprints, and tetrapod dispersal, potentially through spatio-temporal variations in resource availability and arid-hot climatic barriers at low-middle latitudes.

19.
Heliyon ; 6(6): e04211, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32577575

ABSTRACT

OBJECTIVES: The effects of 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymer on the adherence of microorganisms such as non-Candida albicans Candida (NCAC) and methicillin-resistant Staphylococcus aureus (MRSA), frequently detected in oral infections in immunocompromised and/or elderly people, to denture resin material, are still unclear. Here, we report the effects of MPC-polymer on the adherence of C. albicans, NCAC, and MRSA to acrylic denture resin. METHODS: Sixteen strains of C. albicans, seven strains of C. glabrata, two strains of C. tropicalis, one strain of C. parapsilosis, and six strains of MRSA were used. We cultured the fungal/bacterial strains and examined the cell growth and adherence of fungi/bacteria to mucin-coated acrylic denture resin plates (ADRP) with or without MPC-polymer coating, by scanning electron microscopy. The cell surface hydrophobicity of the fungal/bacterial strains was measured by the adsorption to hydrocarbons. RESULTS: MPC-polymer did not affect the growth of all strains of Candida species and MRSA, but significantly suppressed adherence to ADRP in most strains of C. albicans and all strains of NCAC and MRSA. A significant positive correlation was found between cell hydrophobicity and the reduction rates of microbial adherence to ADRP treated with 5% of MPC-polymer. CONCLUSIONS: MPC-polymer treatment for acrylic resin material suppresses the adherence of C. albicans, NCAC and MRSA via their hydrophilicity interaction. CLINICAL SIGNIFICANCE: The application of MPC-polymer for denture hygiene is potent to prevent oral candidiasis, denture stomatitis and opportunistic infection, caused by Candida species and MRSA, via suppressing the adherence of those fungus/bacteria.

20.
Immunopharmacol Immunotoxicol ; 42(4): 373-378, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32538208

ABSTRACT

OBJECTIVES: Carnosic acid (CA), which is one of bioactive compounds from rosemary, has various biological activities. However, the effect of CA on periodontal ligament cells is still uncertain. The aim of this study was to examine the effects of CA on inflammatory cytokines production in human periodontal ligament cells. METHODS: Cytokine and chemokine levels were measured by ELISA. Activations of signal transduction pathway were determined by Western blotting. RESULTS: Treatment of CA decreased inflammatory cytokines such as interleukin (IL)-6, CXC chemokine ligand (CXCL)10, CC chemokine ligand (CCL)2, and CCL20 productions in IL-1ß or tumor necrosis factor (TNF)-α-stimulated human periodontal ligament cells in a dose-dependent manner. Moreover, we found that CA could suppress Jun-N-terminal kinase (JNK) pathway, nuclear factor (NF)-κB pathway and signal transducer and activator of transcription (STAT)3 pathway activation in IL-1ß or TNF-α-stimulated human periodontal ligament cells. CONCLUSION: The results of this study suggest that CA has anti-inflammatory effects in human periodontal ligament cells by inhibiting JNK, NF-κB and STAT3 pathways.


Subject(s)
Abietanes/pharmacology , Antioxidants/pharmacology , Cytokines/antagonists & inhibitors , Inflammation Mediators/antagonists & inhibitors , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Cells, Cultured , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Humans , Inflammation Mediators/metabolism , Interleukin-1beta/pharmacology , Periodontal Ligament/metabolism , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...