Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Macromol Biosci ; : e2400101, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748813

ABSTRACT

Conventional wound dressings fail to provide features that can assist the healing process of chronic wounds. Multifunctional wound dressings address this issue by incorporating attributes including antibacterial and antioxidant activity, and the ability to enhance wound healing. Herein, polyethylene glycol (PEG)-based antibacterial hydrogel sponge dressings are prepared by a rapid and facile gas foaming method based on an acid chloride/alcohol reaction where tannic acid (TA) is included as a reactant to impart antibacterial efficacy as well as to enhance the mechanical properties of the samples. The results reveal that the TA-integrated sponges possess excellent antibacterial properties against both Escherichia coli and Staphylococcus aureus with approximately 6-8 log reduction in the microbial colony count after 6 h, indicating their high potential for management of infection-prone wounds. Compared to the control sample, TA incorporation increases the elastic modulus by twofold. As the samples also exhibit biocompatibility, antioxidant activity, and wound healing capacity, the novel TA-incorporated hydrogels can be an alternative to traditional wound dressings for wounds with low-to-moderate exudate.

2.
ACS Omega ; 5(18): 10288-10296, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32426585

ABSTRACT

Ventilator-associated pneumonia (VAP) is a highly common hospital-acquired infection affecting people that require mechanical ventilation. The endotracheal tube (ETT) used during the ventilation process provides a surface that can allow bacterial colonization and biofilm formation, which can lead to VAP. Although various approaches, including ETT design and material selection, as well as antimicrobial coatings have been employed to minimize adverse events, VAP remains a significant unresolved clinical issue. In this study, we have utilized a novel styrylbenzene-based antimicrobial (BCP3) in a simple and robust coating that allows its long-term release at an effective level. BCP3 was applied onto PVC ETT segments blended together with poly(lactic-co-glycolic acid) via a facile dip-coating process with controlled loadings. In vitro studies demonstrated concentration-dependent release of BCP3 from the coatings for at least 31 days. Bacterial assays using major VAP culprits, Staphylococcus aureus and Pseudomonas aeruginosa, demonstrated significant growth inhibition, with a stronger effect on S. aureus. Despite its ability to inhibit bacterial growth, BCP3 showed no cytotoxicity toward mammalian (L929) fibroblasts, which makes it attractive from a clinical perspective. The coating procedure was successfully translated to coat the entire ETTs, making it highly amenable for large-scale manufacturing.

3.
J Thorac Cardiovasc Surg ; 159(2): 491-502.e2, 2020 02.
Article in English | MEDLINE | ID: mdl-30955967

ABSTRACT

OBJECTIVES: Driveline infections remain an important complication of ventricular assist device therapy, with biofilm formation being a major contributor. This study aimed to elucidate factors that govern biofilm formation and migration on clinically relevant ventricular assist device drivelines. METHODS: Experimental analyses were performed on HeartWare HVAD (HeartWare International Inc, Framingham, Mass) drivelines to assess surface chemistry and biofilm formation. To mimic the driveline exit site, a drip-flow biofilm reactor assay was used. To mimic a subcutaneous tissue environment, a tunnel-based interstitial biofilm assay was developed. Clinical HVAD drivelines explanted at the time of cardiac transplantation were also examined by scanning electron microscopy. RESULTS: Common causative pathogens of driveline infections were able to adhere to the smooth and velour sections of the HVAD driveline and formed robust biofilms in the drip-flow biofilm reactor; however, Pseudomonas aeruginosa and Candida albicans had greater biomass. Biofilm migration within the interstitial driveline tunnel was evident for Staphylococcus epidermidis, Staphylococcus aureus, and C albicans, but not P aeruginosa. Biofilm formation by staphylococci was 500 to 10,000 times higher in the tunnel-based model compared with our exit site model. The 3-dimensional structure of the driveline velour and the use of silicone adhesive in driveline manufacturing were found to promote biofilm growth, and explanted patient drivelines demonstrated inadequate tissue in-growth along the entire velour with micro-gaps between velour fibers. CONCLUSIONS: This work highlights the predilection of pathogens to different parts of the driveline, the importance of the subcutaneous tunnel to biofilm formation and migration, and the presence of micro-gaps in clinical drivelines that could facilitate invasive driveline infections.


Subject(s)
Biofilms , Heart-Assist Devices/microbiology , Candida albicans/pathogenicity , Candida albicans/physiology , Candidiasis/microbiology , Cell Movement , Humans , Prosthesis-Related Infections/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/physiology , Staphylococcus epidermidis/pathogenicity , Staphylococcus epidermidis/physiology
4.
Cardiovasc Drugs Ther ; 33(6): 687-692, 2019 12.
Article in English | MEDLINE | ID: mdl-31885055

ABSTRACT

PURPOSE: Drug-eluting balloon catheters (DEBc) coated with paclitaxel (PTX) have been associated with potential safety concerns. An efficacious but less toxic balloon coating may reduce these outcomes. We evaluated a novel DEBc, Epi-Solve, coated with metacept-3 (MCT-3), a member of the histone deacetylase inhibitor (HDACi) class of epigenetic agents, in a large animal model of neointimal hyperplasia (NIH). METHODS: Plain balloon angioplasty (PABA) catheters were ultrasonically coated with MCT-3 to generate Epi-Solve DEBc. An ovine model of NIH formation was established utilising partial left common carotid artery (LCA) ligation. Twenty-eight days post neointima (NI) induction, PABA, Epi-Solve or PTX-coated DEBc were deployed at the site of induced NI formation. Twenty-eight days post-intervention, ligated vessels were evaluated for attenuation of NI formation, gene expression profiles and immunohistochemical analysis. RESULTS: Epi-Solve DEBc demonstrated attenuation of NIH over no intervention and a trend to inhibition of NIH over PABA. Gene expression analysis and immunohistochemical studies identified significant anti-proliferative and anti-inflammatory signatures and reduced vascular endothelial cell activation compared to PABA. CONCLUSIONS: Epi-Solve is a novel HDACi-coated DEBc which demonstrates significant anti-proliferative and anti-inflammatory signatures and reduced vascular endothelial cell activation compared to PABA in an ovine model and may afford endothelial protection.


Subject(s)
Angioplasty, Balloon/instrumentation , Carotid Artery Diseases/therapy , Carotid Artery, Common/pathology , Coated Materials, Biocompatible , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/administration & dosage , Neointima , Vascular Access Devices , Animals , Carotid Artery Diseases/genetics , Carotid Artery Diseases/metabolism , Carotid Artery Diseases/pathology , Carotid Artery, Common/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Equipment Design , Female , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammation Mediators/metabolism , Paclitaxel/administration & dosage , Sheep, Domestic , Time Factors
5.
Optom Vis Sci ; 95(10): 937-946, 2018 10.
Article in English | MEDLINE | ID: mdl-30234828

ABSTRACT

SIGNIFICANCE: This study investigated the development of an antimicrobial coating on silicone hydrogel contact lenses that may have the capacity to reduce contact lens-related infection and inflammatory events. PURPOSE: The purpose of this study was to develop an effective antimicrobial coating for silicone hydrogel contact lenses by attachment of Mel4 peptide. METHODS: Lotrafilcon A, comfilcon A, somofilcon A, senofilcon A, and lotrafilcon B silicone hydrogel contact lenses were plasma coated with acrylic acid followed by Mel4 antimicrobial peptide immobilization by covalent coupling. Peptide immobilization was quantified by x-ray electron spectroscopy. Contact lens diameter, base curve, center thickness, and lens surface wettability were measured by captive-bubble contact-angle technique. Antimicrobial activity of the lenses was determined against Pseudomonas aeruginosa and Staphylococcus aureus by viable plate count and also after soaking with artificial tears solution for 1 day. In vivo safety and biocompatibility were determined in an animal model for 1 week. RESULTS: Mel4 peptide-coated silicone hydrogel contact lenses were associated with high antimicrobial inhibition (>2 log), except for lotrafilcon B and senofilcon A. Lotrafilcon B did not exhibit any activity, whereas senofilcon A showed 1.4- and 0.7-log inhibition against P. aeruginosa and S. aureus, respectively. X-ray electron spectroscopy revealed significant increases in the lens surface-bound amide nitrogen in all contact lenses except for lotrafilcon B. All contact lens parameters remained unchanged except for the base curve and center thickness for senofilcon A. Mel4 immobilization was associated with a decrease in contact angle. Mel4-coated contact lens wear was not associated with any signs or symptoms of ocular irritation in a rabbit model study. Reduced antimicrobial activity was observed with all the lenses after soaking with artificial tears solution or rabbit wear. CONCLUSIONS: Mel4 antimicrobial coating may be an effective option for development of antimicrobial silicone hydrogel contact lenses.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Adhesion/drug effects , Coated Materials, Biocompatible/chemistry , Contact Lenses, Hydrophilic/microbiology , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/physiology , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Drug Carriers , Humans , Prosthesis Design , Rabbits , Silicone Elastomers , Wettability
6.
J Colloid Interface Sci ; 519: 107-118, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29486430

ABSTRACT

The fight against infection in an era of emerging antibiotic resistant bacteria is one of the grandest scientific challenges facing society today. Nano-carriers show great promise in improving the antibacterial activity of antibiotics as they are able to enhance their solubility, provide sustained release and reduce toxic side effects via specifically targeting infection sites. Here, we investigate the antibacterial effect of two lipidic nano-carriers that contain the poorly soluble antibiotic rifampicin in their bilayers. One nanoparticle is assembled solely from the lipid monoolein, thus is neutral at physiological pH and the other contains a mixture of monoolein and the cationic lipid N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate (DOTAP), thus is positively charged. Our results show that rifampicin-loaded nanoparticles reduce the minimum inhibitory concentration against Staphylococcus aureus compared to rifampicin alone, however this reduction was most pronounced for the positively charged nanoparticles. Fluorescent microscopy revealed binding of all nanoparticles to the bacteria and enhanced binding was observed for the charged nanoparticles. This suggests that the cationic lipids promote electrostatic interactions with the negatively charged bacterial membrane. Förster resonance energy transfer demonstrated that the cationic charged nanoparticles were able to fuse with bacterial membranes whilst atomic force microscopy and transmission electron microscopy revealed structural damage to the bacterial membranes caused by the nanoparticles. Significantly, we identified a concentration window in which the nanoparticles exhibited antibacterial activity while not affecting HeLa and CHO cell viability. This ability to improve the efficacy of antibiotics without affecting their eukaryotic cytotoxicity is of significant importance for future development of nanomedicine based strategies to combat infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Liquid Crystals/chemistry , Nanoparticles/chemistry , Rifampin/pharmacology , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , CHO Cells , Cell Survival/drug effects , Cricetulus , Drug Carriers , Drug Liberation , Glycerides/chemistry , HeLa Cells , Humans , Microbial Sensitivity Tests , Particle Size , Rifampin/chemistry , Surface Properties
7.
Polymers (Basel) ; 10(2)2018 Feb 12.
Article in English | MEDLINE | ID: mdl-30966215

ABSTRACT

Porous polyester-ether hydrogel scaffolds (PEHs) were fabricated using acid chloride/alcohol chemistry and a salt templating approach. The PEHs were produced from readily available and cheap commercial reagents via the reaction of hydroxyl terminated poly(ethylene glycol) (PEG) derivatives with sebacoyl, succinyl, or trimesoyl chloride to afford ester cross-links between the PEG chains. Through variation of the acid chloride cross-linkers used in the synthesis and the incorporation of a hydrophobic modifier (poly(caprolactone) (PCL)), it was possible to tune the degradation rates and mechanical properties of the resulting hydrogels. Several of the hydrogel formulations displayed exceptional mechanical properties, remaining elastic without fracture at compressive strains of up to 80%, whilst still displaying degradation over a period of weeks to months. A subcutaneous rat model was used to study the scaffolds in vivo and revealed that the PEHs were infiltrated with well vascularised tissue within two weeks and had undergone significant degradation in 16 weeks without any signs of toxicity. Histological evaluation for immune responses revealed that the PEHs incite only a minor inflammatory response that is reduced over 16 weeks with no evidence of adverse effects.

8.
Chem Commun (Camb) ; 53(48): 6488-6491, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28569892

ABSTRACT

We describe a simple and solvent-free method to generate nitric oxide (NO)-releasing coatings by incorporating diazeniumdiolate (NONOate) into allylamine or diallylamine plasma polymer coatings. The resulting coatings demonstrate continuous release of NO for over 48 hours and are effective at reducing the adhesion and biofilm formation of medically-relevant Gram-negative and Gram-positive opportunistic pathogens.


Subject(s)
Amines/chemistry , Azo Compounds/chemistry , Biofilms , Nitric Oxide/chemistry , Polymers/chemistry , Bacterial Adhesion , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism
9.
ACS Biomater Sci Eng ; 3(1): 78-87, 2017 Jan 09.
Article in English | MEDLINE | ID: mdl-33429684

ABSTRACT

Infections resulting from the formation of biofilms on medical devices remain a significant clinical problem. There is growing consensus that coatings displaying multiple defense mechanisms, such as low biofouling combined with surface active antimicrobial agents, is required. Quorum sensing (QS) is a bacterial mechanism used to coordinate their collective behavior. QS can also be exploited for antimicrobial purposes, to minimize colonization and biofilm formation by hindering bacterial communication. We have investigated a poly(ethylene glycol) (PEG) based multifunctional coating that allows the covalent incorporation of the synthetic QS inhibitor 5-methylene-1-(prop-2-enoyl)-4-(2-fluorophenyl)-dihydropyrrol-2-one (DHP) with a surface providing reduced cell attachment and bacterial adhesion. The simple coating, which can be applied using either a one- or two-step procedure, provides the first example for a multifunctional surface offering a combination of a quorum sensing inhibitor with a low biofouling background. X-ray photoelectron spectroscopy (XPS) was utilized to confirm the coating formation and the incorporation of DHP. L929 mouse fibroblast cell attachment and cytotoxicity studies demonstrated the low biofouling and biocompatible properties of the coatings. Bacterial colonization assays using Staphylococcus aureus and Pseudomonas aeruginosa demonstrated the ability of these combination coatings to reduce the formation of biofilms. Importantly, the results demonstrate that the DHP remained active after covalent incorporation into the coating.

10.
Macromol Biosci ; 17(4)2017 04.
Article in English | MEDLINE | ID: mdl-27762506

ABSTRACT

Control over biointerfacial interactions on material surfaces is of significant interest in many biomedical applications and extends from the modulation of protein adsorption and cellular responses to the inhibition of bacterial attachment and biofilm formation. Effective control over biointerfaces is best achieved by reducing nonspecific interactions on the surface while also displaying specific bioactive signals. A poly(ethylene glycol) (PEG)-based multifunctional coating has been developed that provides effective reduction of protein fouling while enabling covalent immobilization of peptides in a one or two-step manner. The highly protein resistant properties of the coating, synthesized via the crosslinking of PEG diepoxide and diaminopropane, are confirmed via europium-labeled fibronectin adsorption and cell attachment assays. The ability to covalently incorporate bioactive signals is demonstrated using the cyclic peptides cRGDfK and cRADfK. L929 cells show enhanced attachment on the biologically active cRGDfK containing surfaces, while the surface remains nonadhesive when the nonbiologically active cRADfK peptide is immobilized. The crosslinked PEG-based coating also demonstrates excellent resistance toward Staphylococcus aureus attachment in a 48 h biofilm assay, achieving a >96% reduction compared to the control surface. Additionally, incorporation of the antimicrobial peptide melimine during coating formation further significantly decreases biofilm formation (>99%).


Subject(s)
Coated Materials, Biocompatible/pharmacology , Cross-Linking Reagents/chemistry , Adsorption , Animals , Biofilms/drug effects , Cell Adhesion/drug effects , Cell Death/drug effects , Cell Line , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Diamines/chemical synthesis , Diamines/chemistry , Fibroblasts/cytology , Fibroblasts/drug effects , Fibronectins/metabolism , Humans , Mice , Microbial Sensitivity Tests , Microscopy, Confocal , Peptides, Cyclic/pharmacology , Photoelectron Spectroscopy , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Staphylococcus aureus/drug effects , Surface Properties
11.
Adv Healthc Mater ; 3(9): 1496-507, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24652807

ABSTRACT

Corneal endothelial cells (CECs) are responsible for maintaining the transparency of the human cornea. Loss of CECs results in blindness, requiring corneal transplantation. In this study, fabrication of biocompatible and biodegradable poly(ethylene glycol) (PEG)-based hydrogel films (PHFs) for the regeneration and transplantation of CECs is described. The 50-µm thin hydrogel films have similar or greater tensile strengths to human corneal tissue. Light transmission studies reveal that the films are >98% optically transparent, while in vitro degradation studies demonstrate their biodegradation characteristics. Cell culture studies demonstrate the regeneration of sheep corneal endothelium on the PHFs. Although sheep CECs do not regenerate in vivo, these cells proliferate on the films with natural morphology and become 100% confluent within 7 d. Implantation of the PHFs into live sheep corneas demonstrates the robustness of the films for surgical purposes. Regular slit lamp examinations and histology of the cornea after 28 d following surgery reveal minimal inflammatory responses and no toxicity, indicating that the films are benign. The results of this study suggest that PHFs are excellent candidates as platforms for the regeneration and transplantation of CECs as a result of their favorable biocompatibility, degradability, mechanical, and optical properties.


Subject(s)
Biocompatible Materials/chemistry , Endothelium, Corneal/drug effects , Methylgalactosides/chemistry , Polyethylene Glycols/chemistry , Tissue Engineering/methods , Animals , Biocompatible Materials/pharmacology , Biocompatible Materials/toxicity , Cell Proliferation/drug effects , Cell Survival/drug effects , Cornea/cytology , Cornea/surgery , Endothelium, Corneal/cytology , Materials Testing , Methylgalactosides/pharmacology , Methylgalactosides/toxicity , Permeability , Polyethylene Glycols/pharmacology , Polyethylene Glycols/toxicity , Prostheses and Implants , Regeneration , Sheep , Tensile Strength
12.
Acta Biomater ; 10(6): 2769-80, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24561711

ABSTRACT

The development of suitable scaffolds plays a significant role in tissue engineering research. Although scaffolds with promising features have been produced via a variety of innovative methods, there are no fully synthetic tissue engineering scaffolds that possess all the desired properties in one three-dimensional construct. Herein, we report the development of novel polyester poly(ethylene glycol) (PEG) sponges that display many of the desirable scaffold characteristics. Our novel synthetic approach utilizes acidchloride/alcohol chemistry, whereby the reaction between a hydroxyl end-functionalized 4-arm PEG and sebacoyl chloride resulted in cross-linking and simultaneous hydrogen chloride gas production, which was exploited for the in situ formation of highly interconnected pores. Variation of the fabrication conditions, including the precursor volume and concentration, allowed the pore size and structure as well as the compressive properties to be tailored. The sponges were found to possess excellent elastic properties, preserving their shape even after 80% compressive strain without failure. The benign properties of the sponges were demonstrated in an in vivo subcutaneous rat model, which also revealed uniform infiltration of vascularized tissue by 8 weeks and complete degradation of the sponges by 16 weeks, with only a minimal inflammatory response being observed over the course of the experiments.


Subject(s)
Polyesters , Polyethylene Glycols , Surgical Sponges , Tissue Scaffolds , 3T3-L1 Cells , Animals , Male , Mice , Microscopy, Electron, Scanning , Rats , Rats, Sprague-Dawley
13.
Acta Biomater ; 9(5): 6594-605, 2013 May.
Article in English | MEDLINE | ID: mdl-23376126

ABSTRACT

Due to the high demand for donor corneas and their low supply, autologous corneal endothelial cell (CEC) culture and transplantation for treatment of corneal endothelial dysfunction would be highly desirable. Many studies have shown the possibility of culturing CECs in vitro, but lack potential robust substrates for transplantation into the cornea. In this study, we investigate the properties of novel ultrathin chitosan-poly(ethylene glycol) (PEG) hydrogel films (CPHFs) for corneal tissue engineering applications. Cross-linking of chitosan films with diepoxy-PEG and cystamine was employed to prepare ~50 µm (hydrated) hydrogel films. Through variation of the PEG content (1.5-5.9 wt.%) it was possible to tailor the CPHFs to have tensile strains and ultimate stresses identical to or greater than those of human corneal tissue while retaining similar tensile moduli. Light transmission measurements in the visible spectrum (400-700 nm) revealed that the films were >95% optically transparent, above that of the human cornea (maximum ~90%), whilst in vitro degradation studies with lysozyme revealed that the CPHFs maintained the biodegradable characteristics of chitosan. Cell culture studies demonstrated the ability of the CPHFs to support the attachment and proliferation of sheep CECs. Ex vivo surgical trials on ovine eyes demonstrated that the CPHFs displayed excellent characteristics for physical manipulation and implantation purposes. The ultrathin CPHFs display desirable mechanical, optical and degradation properties whilst allowing attachment and proliferation of ovine CECs, and as such are attractive candidates for the regeneration and transplantation of CECs, as well as other corneal tissue engineering applications.


Subject(s)
Chitosan/chemistry , Cornea/anatomy & histology , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Tissue Engineering , Animals , Sheep
14.
Biomaterials ; 31(25): 6454-67, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20542558

ABSTRACT

Highly porous and biodegradable hydrogels based on poly(ethylene glycol) (PEG) and cystamine (Cys) were fabricated using epoxy-amine chemistry and investigated as scaffolds for soft-tissue engineering. Whereas the application of fused-salt templates provided a comprehensive interconnecting pore morphology, the incorporation of a specially designed poly(epsilon-caprolactone) (PCL) cross-linker provided enhanced mechanical function without adversely effecting the scaffolds positive biological interactions. The addition of only 1.2 wt% of the PCL cross-linker was sufficient to provide improvements in the ultimate stress of 30-40%. In vitro studies not only confirmed the non-cytotoxic nature of the scaffolds, but also their degradation products, which were isolated and characterised by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionisation time-of-flight mass spectroscopy (MALDI ToF MS). In vivo trials were conducted over a period of 8 weeks through implantation of the scaffolds into the dorsal region of rats. At both 2 and 8 week time points the explants revealed complete infiltration by the surrounding tissue and the development of a vascular network to support the newly generated tissue, without an excessive foreign-body response.


Subject(s)
Biocompatible Materials/chemistry , Cystamine/chemistry , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , 3T3 Cells , Absorbable Implants , Amines/chemical synthesis , Amines/chemistry , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/metabolism , Cell Survival , Cystamine/chemical synthesis , Cystamine/metabolism , Epoxy Compounds/chemical synthesis , Epoxy Compounds/chemistry , Hydrogels/chemical synthesis , Hydrogels/metabolism , Male , Materials Testing , Mice , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/metabolism , Porosity , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...