Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Autom Sci Eng ; 17(4): 2154-2161, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33746640

ABSTRACT

The development of autonomous or semi-autonomous surgical robots stands to improve the performance of existing teleoperated equipment, but requires fine hand-eye calibration between the free-moving endoscopic camera and patient-side manipulator arms (PSMs). A novel method of solving this problem for the da Vinci® robotic surgical system and kinematically similar systems is presented. First, a series of image-processing and optical-tracking operations are performed to compute the coordinate transformation between the endoscopic camera view frame and an optical-tracking marker permanently affixed to the camera body. Then, the kinematic properties of the PSM are exploited to compute the coordinate transformation between the kinematic base frame of the PSM and an optical marker permanently affixed thereto. Using these transformations, it is then possible to compute the spatial relationship between the PSM and the endoscopic camera using only one tracker snapshot of the two markers. The effectiveness of this calibration is demonstrated by successfully guiding the PSM end effector to points of interest identified through the camera. Additional tests on a surgical task, namely grasping a surgical needle, are also performed to validate the proposed method. The resulting visually-guided robot positioning accuracy is better than the earlier hand-eye calibration results reported in the literature for the da Vinci® system, while supporting intraoperative update of the calibration and requiring only devices that are already commonly used in the surgical environment.

2.
IEEE Int Conf Robot Autom ; 2018: 6617-6624, 2018 May.
Article in English | MEDLINE | ID: mdl-34075324

ABSTRACT

This paper presents algorithms for three-dimensional tracking of surgical needles using the stereo endoscopic camera images obtained from the da Vinci ® Surgical Robotic System. The proposed method employs Bayesian state estimation, computer vision techniques, and robot kinematics. A virtual needle rendering procedure is implemented to create simulated images of the surgical needle under the da Vinci ® robot endoscope, which makes it possible to measure the similarity between the rendered needle image and the real needle. A particle filter algorithm using the mentioned techniques is then used for tracking the surgical needle. The performance of the tracking is experimentally evaluated using an actual da Vinci ® surgical robotic system and quantitatively validated in a ROS/Gazebo simulation thereof.

3.
Rep U S ; 2018: 1298-1305, 2018 Oct.
Article in English | MEDLINE | ID: mdl-31440395

ABSTRACT

This paper presents an approach to surgical tool tracking using stereo vision for the da Vinci® Surgical Robotic System. The proposed method is based on robot kinematics, computer vision techniques and Bayesian state estimation. The proposed method employs a silhouette rendering algorithm to create virtual images of the surgical tool by generating the silhouette of the defined tool geometry under the da Vinci® robot endoscopes. The virtual rendering method provides the tool representation in image form, which makes it possible to measure the distance between the rendered tool and real tool from endoscopic stereo image streams. Particle Filter algorithm employing the virtual rendering method is then used for surgical tool tracking. The tracking performance is evaluated on an actual da Vinci® surgical robotic system and a ROS/Gazebo-based simulation of the da Vinci® system.

4.
Phys Med Biol ; 63(2): 025027, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29185436

ABSTRACT

This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital's clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.


Subject(s)
Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Humans , Iodine , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...