Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Arch Pharm (Weinheim) ; : e2300708, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702288

ABSTRACT

This study aimed to assess and compare diverse formulations of ivermectin-loaded liposomes, employing lipid film hydration and ethanol injection methods. Three lipids (DOPC, SPC, and DSPC) were used in predetermined molar ratios. A total of 18 formulations were created, and a factorial design determined the optimal formulation based on particle size, polydispersity index (PDI), zeta potential, and encapsulation efficiency. The average mean particle size, PDI and zeta potential of the selected formulations (F1, F2, F7, F9, and F11) was, respectively, 196.40 ± 44.60 nm, 0.39 ± 0.09, and -40.24 ± 9.17. The encapsulation efficiency exceeded 80%, with a mean loading capacity of 4.00 ± 1.70%. In vitro studies included transmission electron microscopy, Fourier transform infrared spectroscopy, drug release, and antiviral activity assessments against SARS-CoV-2. The liposomal formulations demonstrated superior antiviral activity compared to free ivermectin, as indicated by lower IC50 values. The results of this study emphasize the effectiveness of ivermectin-loaded liposomes in inhibiting viral activity, highlighting their potential as promising candidates for antiviral therapy. The findings suggest that the strategic use of liposomes as drug carriers can significantly modulate and improve the antiviral properties of ivermectin, offering a novel approach to harnessing its full therapeutic potential. Collectively, these results provide a robust foundation for further exploration of ivermectin as a viral protection tool and optimization of its delivery mechanisms.

2.
ACS Pharmacol Transl Sci ; 7(4): 1032-1042, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633598

ABSTRACT

The COVID-19 pandemic revealed the need for therapeutic and pharmaceutical molecule development in a short time with different approaches. Although boosting immunological memory by vaccination was the quickest and robust strategy, still medication is required for the immediate treatment of a patient. A popular approach is the mining of new therapeutic molecules. Peptide-based drug candidates are also becoming a popular avenue. To target whole pathogenic viral agents, peptide libraries can be employed. With this motivation, we have used the 12mer M13 phage display library for selecting SARS-CoV-2 targeting peptides as potential neutralizing molecules to prevent viral infections. Panning was applied with four iterative cycles to select SARS-CoV-2 targeting phage particles displaying 12-amino acid-long peptides. Randomly selected peptide sequences were synthesized by a solid-state peptide synthesis method. Later, selected peptides were analyzed by the quartz crystal microbalance method to characterize their molecular interaction with SARS-CoV-2's S protein. Finally, the neutralization activity of the selected peptides was probed with an in-house enzyme-linked immunosorbent assay. The results showed that scpep3, scpep8, and scpep10 peptides have both binding and neutralizing capacity for S1 protein as a candidate for therapeutic molecule. The results of this study have a translational potential with future in vivo and human studies.

3.
Zoonoses Public Health ; 71(3): 225-235, 2024 May.
Article in English | MEDLINE | ID: mdl-38041213

ABSTRACT

AIMS: Recent research has prioritized emerging and re-emerging diseases that affect human and animal health, particularly to describe how these diseases enter countries and determine their transmission cycles. Given that migratory birds play a significant role in spreading infections, the present study analysed their migration paths and specimens to investigate Orthoflavivirus, Orthonairovirus, Alphavirus and Phlebovirus in birds in Samsun province, Türkiye. METHODS AND RESULTS: For these viruses, 312 samples from 56 birds were analysed using RT-PCR and qRT-PCR. Toscana virus (TOSV) was identified in 14 birds (four mallards, five partridges, four quails and one pigeon), representing 25% of the birds sampled. Genotype B was reported in all 14 birds. After inoculating the positive tissues in cell cultures, TOSV was isolated from the organs of pigeons, mallards and partridges. CONCLUSIONS: This is the first time TOSV has been isolated in cell culture from birds and indicates that they may play a role in spreading TOSV in Türkiye. The results also suggest that TOSV might be carried between countries by migratory birds.


Subject(s)
Phlebovirus , Sandfly fever Naples virus , Animals , Humans , Sandfly fever Naples virus/genetics , Turkey , Birds , Antibodies, Viral
4.
Int J Pharm ; 648: 123568, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37925042

ABSTRACT

Subunit vaccines that have weak immunogenic activity require adjuvant systems for enhancedcellular and long-acting humoral immune responses. Both lipid-based and polymeric-based particulate adjuvants have been widely investigated to induce the desired immune responses against the subunit vaccines. The adjuvant efficacy of these particulate adjuvants depends upon their physicochemical properties such as particle size, surface charge, shape and their composition. Previously, we showed in vitro effect of adjuvant systems based on combination of chitosan and Salmonella Typhi porins in microparticle or nanoparticle form, which were spherical with positive surface charge. In the present study, we have further developed an adjuvant system based on combination of porins with liposomes (cationic and neutral) and investigated the adjuvant effect of both the liposomal and polymeric systems in BALB/c mice using a model antigen, ovalbumin. Humoral immune responses were determined following priming and booster dose at 15-day intervals. In overall, IgM and IgG levels were induced in the presence of both the liposomal and polymeric adjuvant systems indicating the positive impact of combination with porins. The highest IgM levels were obtained on Day 8, and liposomal adjuvant systems were found to elicit significantly higher IgM levels compared to polymeric systems. IgG levels were increased significantly after booster, particularly more profound with the micro-sized polymeric system when compared to cationic liposomal system with nano-size. Our results demonstrated that the developed particulate systems are promising both as an adjuvant and delivery system, providing enhanced immune responses against subunit antigens, and have the potential for long-term protection.


Subject(s)
Liposomes , Salmonella typhi , Mice , Animals , Liposomes/chemistry , Porins , Adjuvants, Immunologic/chemistry , Adjuvants, Pharmaceutic , Antigens , Vaccines, Subunit , Immunoglobulin G , Immunoglobulin M
6.
Mikrobiyol Bul ; 57(3): 401-418, 2023 Jul.
Article in Turkish | MEDLINE | ID: mdl-37462304

ABSTRACT

Ganciclovir-resistant cytomegalovirus (CMV) strains are reported following long-term antiviral agent use, especially for immune-suppressive patients. In this study, it was aimed to investigate the mutations in the UL97 gene of CMV, which causes ganciclovir (GCV) resistance by genotypic and phenotypic methods in patients who developed CMV infection following hematopoietic cell (HCT) or solid organ transplantation (SOT). Thirty patients who had HCT or SOT in Mediterranean University Hospital and developed CMV infection during routine follow-up with a viral load of CMV over 1000 copies/mL were included in the study. CMV DNA was analyzed by an automated system (Cobas Ampliprep/COBAS TaqMan CMV Test, Roche Diagnostics, Germany) quantitatively. DNA sequence analysis of the regions including codons 420-664 in the UL97 gene region was done by the Sanger sequencing method to detect mutations causing antiviral resistance and compared with defined mutations. In order to investigate antiviral resistance by phenotypic methods, heparinized blood samples of the patients were collected, 'buffy coat (leukocyte layer)' was inoculated into MRC-5 cells by centrifugation method and CMV growth in these cells was controlled with monoclonal antibodies when growth was detected, virus titer was determined and plaque reduction test was applied as recommended. It was determined that 22 of the 30 patients were HCT recipients and eight were SOT (five kidney, three liver) recipients. When the CMV serology pattern of the patients was evaluated before transplantation, 29 (96.7%) patients were found to be seropositive and one (3.3%) patient was found to be seronegative. Totally, nine CMV UL97 mutations were detected in seven (23.3%) pediatric patients who had HCT, including six seropositive and one seronegative case. In addition, one mutation (D605E) not known to cause GCV resistance was detected in a seronegative recipient and three previously unidentified mutations were detected (1474T, F499S, V559A) in a seronegative recipient. Five of the mutations defined were UL97 mutations with a defined clinical resistance against GCV in each of the five recipients (C603W, C592G, H520Q, M460V, A594T). In the plaque reduction test using 3 µM, 12 µM, 48 µM and 96 µM concentrations of GCV in CMV strains, the IC50 value was determined to be ≥ 8 µM for the five CMV strains, and the phenotypic presence of GCV resistance was shown. Clinical resistance associated with CMV UL97 mutation was detected in five (22.7%) of 22 patients who had HCT. GCV resistance was also demonstrated in these patients by phenotypic methods. No UL97 mutation was detected in the patients who had SOT.


Subject(s)
Cytomegalovirus Infections , Ganciclovir , Humans , Child , Ganciclovir/pharmacology , Ganciclovir/therapeutic use , Cytomegalovirus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/diagnosis , Mutation , Drug Resistance, Viral/genetics
7.
Sci Rep ; 13(1): 5224, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997624

ABSTRACT

Recombinant protein-based SARS-CoV-2 vaccines are needed to fill the vaccine equity gap. Because protein-subunit based vaccines are easier and cheaper to produce and do not require special storage/transportation conditions, they are suitable for low-/middle-income countries. Here, we report our vaccine development studies with the receptor binding domain of the SARS-CoV-2 Delta Plus strain (RBD-DP) which caused increased hospitalizations compared to other variants. First, we expressed RBD-DP in the Pichia pastoris yeast system and upscaled it to a 5-L fermenter for production. After three-step purification, we obtained RBD-DP with > 95% purity from a protein yield of > 1 g/L of supernatant. Several biophysical and biochemical characterizations were performed to confirm its identity, stability, and functionality. Then, it was formulated in different contents with Alum and CpG for mice immunization. After three doses of immunization, IgG titers from sera reached to > 106 and most importantly it showed high T-cell responses which are required for an effective vaccine to prevent severe COVID-19 disease. A live neutralization test was performed with both the Wuhan strain (B.1.1.7) and Delta strain (B.1.617.2) and it showed high neutralization antibody content for both strains. A challenge study with SARS-CoV-2 infected K18-hACE2 transgenic mice showed good immunoprotective activity with no viruses in the lungs and no lung inflammation for all immunized mice.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , SARS-CoV-2/genetics , COVID-19/prevention & control , Mice, Transgenic , Saccharomyces cerevisiae , Antibodies, Viral , Antibodies, Neutralizing
8.
J Vet Behav ; 60: 79-88, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36628157

ABSTRACT

Medical detection dogs have potential to be used to screen asymptomatic patients in crowded areas at risk of epidemics such as the SARS-CoV-2 pandemic. However, the fact that SARS-CoV-2 detection dogs are in direct contact with infected people or materials raises important concerns due to the zoonotic potential of the virus. No study has yet recommended a safety protocol to ensure the health of SARS- CoV-2 detection dogs during training and working in public areas. This study sought to identify suitable decontamination methods to obtain nonpathogenic face mask samples while working with SARS-CoV-2 detection dogs and to investigate whether dogs were able to adapt themselves to other decontamination procedures once they were trained for a specific odor. The present study was designed as a four-phase study: (a) Method development, (b) Testing of decon- tamination methods, (c) Testing of training methodology, and (d) Real life scenario. Surgical face masks were used as scent samples. In total, 3 dogs were trained. The practical use of 3 different decontam- ination procedures (storage, heating, and UV-C light) while training SARS-CoV-2 detection dogs were tested. The dog trained for the task alerted to the samples inactivated by the storage method with a sensitivity of100 % and specificity of 98.28 %. In the last phase of this study, one dog of 2 dogs trained, alerted to the samples inactivated by the UV-C light with a sensitivity of 91.30% and specificity of 97.16% while the other dog detected the sample with a sensitivity of 96.00% and specificity of 97.65 %.

9.
Immun Inflamm Dis ; 10(12): e748, 2022 12.
Article in English | MEDLINE | ID: mdl-36444622

ABSTRACT

INTRODUCTION: Coronavirus disease (COVID-19) is ongoing as a global epidemic and there is still a need to develop much safer and more effective new vaccines that can also be easily adapted to important variants of the pathogen. In the present study in this direction, we developed a new COVID-19 vaccine, composed of two critical antigenic fragments of the S1 and S2 region of severe acute respiratory syndrome coronavirus 2 as well as the whole nucleocapsid protein (N), which was formulated with either alum or alum plus monophosphoryl lipid A (MPLA) adjuvant combinations. METHODS: From within the spike protein S1 region, a fragmented protein P1 (MW:33 kDa) which includes the receptor-binding domain (RBD), another fragment protein P2 (MW:17.6) which contains important antigenic epitopes within the spike protein S2 region, and N protein (MW:46 kDa) were obtained after recombinant expression of the corresponding gene regions in Escherichia coli BL21. For use in immunization studies, three proteins were adsorbed with aluminum hydroxide gel and with the combination of aluminum hydroxide gel plus MPLA. RESULTS: Each of the three protein antigens produced strong reactions in enzyme-linked immunosorbent assays and Western blot analysis studies performed with convalescent COVID-19 patient sera. In mice, these combined protein vaccine candidates elicited high titer anti-P1, anti-P2, and anti-N IgG and IgG2a responses. These also induced highly neutralizing antibodies and elicited significant cell-mediated immunity as demonstrated by enhanced antigen-specific levels of interferon-γ (INF-γ) in the splenocytes of immunized mice. CONCLUSION: The results of this study showed that formulations of the three proteins with Alum or Alum + MPLA are effective in terms of humoral and cellular responses. However, since the Alum + MPLA formulation appears to be superior in Th1 response, this vaccine candidate may be recommended mainly for the elderly and immunocompromised individuals. We also believe that the alum-only formulation will provide great benefits for adults, young adolescents, and children.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mice , Animals , Humans , Nucleocapsid Proteins , COVID-19/prevention & control , Aluminum Hydroxide , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit
10.
Adv Mater Interfaces ; : 2201126, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36248312

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously infecting people all around the world since its outbreak in 2019. Studies for numerous infection detection strategies are continuing. The sensitivity of detection methods is crucial to separate people with mild infections from people who are asymptomatic. In this sense, a strategy that would help to capture and isolate the SARS-CoV-2 virus prior to tests can be effective and beneficial. To this extent, genetically engineered biomaterials grounding from the biofilm protein of Escherichia coli are beneficial due to their robustness and adaptability to various application areas. Through functionalizing the E. coli biofilm protein, diverse properties can be attained such as enzyme display, nanoparticle production, and medical implant structures. Here, E. coli species are employed to express major curli protein CsgA and Griffithsin (GRFT) as fusion proteins, through a complex formation using SpyTag and SpyCatcher domains. In this study, a complex system with a CsgA scaffold harboring the affinity of GRFT against Spike protein to capture and isolate SARS-CoV-2 virus is successfully developed. It is shown that the hybrid recombinant protein can dramatically increase the sensitivity of currently available lateral flow assays for Sars-CoV-2 diagnostics.

11.
ACS Nano ; 16(3): 3821-3833, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35785967

ABSTRACT

Mass spectrometry of intact nanoparticles and viruses can serve as a potent characterization tool for material science and biophysics. Inaccessible by widespread commercial techniques, the mass of single nanoparticles and viruses (>10MDa) can be readily measured by nanoelectromechanical systems (NEMS)-based mass spectrometry, where charged and isolated analyte particles are generated by electrospray ionization (ESI) in air and transported onto the NEMS resonator for capture and detection. However, the applicability of NEMS as a practical solution is hindered by their miniscule surface area, which results in poor limit-of-detection and low capture efficiency values. Another hindrance is the necessity to house the NEMS inside complex vacuum systems, which is required in part to focus analytes toward the miniscule detection surface of the NEMS. Here, we overcome both limitations by integrating an ion lens onto the NEMS chip. The ion lens is composed of a polymer layer, which charges up by receiving part of the ions incoming from the ESI tip and consequently starts to focus the analytes toward an open window aligned with the active area of the NEMS electrostatically. With this integrated system, we have detected the mass of gold and polystyrene nanoparticles under ambient conditions and with two orders-of-magnitude improvement in capture efficiency compared to the state-of-the-art. We then applied this technology to obtain the mass spectrum of SARS-CoV-2 and BoHV-1 virions. With the increase in analytical throughput, the simplicity of the overall setup, and the operation capability under ambient conditions, the technique demonstrates that NEMS mass spectrometry can be deployed for mass detection of engineered nanoparticles and biological samples efficiently.


Subject(s)
COVID-19 , Nanoparticles , Viruses , Atmospheric Pressure , Humans , Mass Spectrometry/methods , SARS-CoV-2
12.
ACS Infect Dis ; 8(7): 1253-1264, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35426678

ABSTRACT

The COVID-19 (coronavirus disease-19) pandemic affected more than 180 million people around the globe, causing more than five million deaths as of January 2022. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the new coronavirus, has been identified as the primary cause of the infection. The number of vaccinated people is increasing; however, prophylactic drugs are highly demanded to ensure secure social contact. A number of drug molecules have been repurposed to fight against SARS-CoV-2, and some of them have been proven to be effective in preventing hospitalization or ICU admissions. Here, we demonstrated griffithsin (GRFT), a lectin protein, to block the entry of SARS-CoV-2 and its variants, Delta and Omicron, into the Vero E6 cell lines and IFNAR-/- mouse models by attaching to the spike protein of SARS-CoV-2. Given the current mutation frequency of SARS-CoV-2, we believe that GRFT protein-based drugs will have a high impact in preventing the transmission of both the Wuhan strain as well as any other emerging variants, including Delta and Omicron variants, causing the high-speed spread of COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Animals , COVID-19/prevention & control , Humans , Lectins , Mice , Pandemics
13.
Res Vet Sci ; 145: 63-70, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35168111

ABSTRACT

Schmallenberg orthobunyavirus (SBV), first discovered in 2011, belongs to the Orthobunyavirus genus of the Peribunyaviridae family. SBV, which predominantly infects ruminants, can cause severe fetal malformations when pregnant animals are infected during a critical phase of gestation. In this study, 1590 blood serum samples from cattle, sheep, and goats were obtained for serological investigation and 1604 specimens for virological investigation (including 1414 whole blood with EDTA, 165 vaginal swab samples from aborting animals, and tissue samples from 25 dead and/or aborted fetuses) in private and family-type ruminant establishments in Turkey's Eastern Mediterranean region. All the blood serum samples were tested for the presence of antibodies using ELISA, which showed SBV antibodies in 29.11% (95% CI: 26.89%-31.35%). The virological samples were tested using real-time RT-PCR for SBV nucleic acid presence, which showed 3.17% (95% CI:2.32%-4.04%) were positive. Finally, 10 different Culicoides species (a total of 29,156 Culicoides, including 16,005 females and 13,151 males) were tested to identify the vectors thought to carry infections in the region. However, no SBV nucleic acid was detected in the Culicoides pools.


Subject(s)
Bunyaviridae Infections , Cattle Diseases , Goat Diseases , Orthobunyavirus , Sheep Diseases , Animals , Antibodies, Viral , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Cattle , Cattle Diseases/epidemiology , Female , Goat Diseases/epidemiology , Male , Mediterranean Region , Pregnancy , Ruminants , Seroepidemiologic Studies , Sheep , Turkey/epidemiology
14.
J Med Virol ; 94(5): 1983-1989, 2022 05.
Article in English | MEDLINE | ID: mdl-34967013

ABSTRACT

There are limited data on how long neutralizing antibody (NAb) response elicited via primary SARS-CoV-2 infection will last. Eighty-four serum samples were obtained from a prospective cohort of 42 laboratory-confirmed COVID-19 inpatients at the time of discharge from the hospital and in the late convalescent phase. A virus neutralization assay was performed to determine the presence and titers of NAbs with authentic SARS-CoV-2. Long-term dynamics of NAbs and factors that may have an impact on humoral immunity were investigated. Mild and moderate/severe patients were compared. The mean sampling time was 11.12 ± 5.02 days (4-28) for the discharge test and 268.12 ± 11.65 days (247-296) for the follow-up test. NAb response was present in 83.3% of the patients about 10 months after infection. The detectable long-term NAb rate was significantly higher in mild patients when compared to moderate/severe patients (95.7% vs. 68.4%, p = 0.025). In the follow-up, NAb-positive and -negative patients were compared to determine the predictors of the presence of long-term humoral immunity. The only significant factor was disease severity. Patients with mild infections have more chance to have NAbs for a longer time. Age, gender, and comorbidity did not affect long-term NAb response. NAb titers decreased significantly over time, with an average rank of 24.0 versus 19.1 (p = 0.002). Multivariate generalized estimating equation analysis revealed that no parameter has an impact on the change of NAb titers over time. The majority of the late convalescent patients still had detectable low levels of neutralizing antibodies. The protective effect of these titers of NAbs from re-infections needs further studies.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Humans , Prospective Studies , SARS-CoV-2
15.
Front Plant Sci ; 12: 742875, 2021.
Article in English | MEDLINE | ID: mdl-34938305

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs a safe, cost-effective SARS-CoV-2 vaccine as well as therapeutic and antiviral drugs to combat COVID-19. Angiotensin-converting enzyme 2 (ACE2), as a key receptor for SARS-CoV-2 infections, has been proposed as a potential therapeutic tool in patients with COVID-19. In this study, we report a high-level production (about ∼0.75 g/kg leaf biomass) of human soluble (truncated) ACE2 in the Nicotiana benthamiana plant. After the Ni-NTA single-step, the purification yields of recombinant plant produced ACE2 protein in glycosylated and deglycosylated forms calculated as ∼0.4 and 0.5 g/kg leaf biomass, respectively. The plant produced recombinant human soluble ACE2s successfully bind to the SARS-CoV-2 spike protein. Importantly, both deglycosylated and glycosylated forms of ACE2 are stable at increased temperatures for extended periods of time and demonstrated strong anti-SARS-CoV-2 activities in vitro. The half maximal inhibitory concentration (IC50) values of glycosylated ACE2 (gACE2) and deglycosylated ACE2 (dACE2) were ∼1.0 and 8.48 µg/ml, respectively, for the pre-entry infection, when incubated with 100TCID50 of SARS-CoV-2. Therefore, plant produced soluble ACE2s are promising cost-effective and safe candidates as a potential therapeutic tool in the treatment of patients with COVID-19.

16.
Trop Anim Health Prod ; 53(5): 453, 2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34536145

ABSTRACT

West Nile virus (WNV), a member of the Flaviviridae, is a major arbovirus that causes West Nile fever. Previous data showed the prevalence of the WNV serologically and molecular in Turkey, and the presence of lineage 1 in horses and humans has been reported. This is the first notification of partial phylogeny of WNV detected in donkeys in the northeast of Turkey (on the Iranian border). Blood serum samples collected from 25 donkeys without clinical symptoms were tested by RT-PCR. Sequence analysis of the sample detected as positive was performed. Multiple sequence alignments of reference sequences taken from GenBank were performed using the ClustalW method using the MEGA6 program. Partial nucleotide sequences of the capsid gene coding region revealed that the strains are closely related to viruses of lineage 1, clade 1a. According to the phylogenetic tree, the TUR/Igdir/donkey strain was included in the same cluster as the strain (KJ958922) previously obtained from horses in Turkey and the strain (GQ851658) from the Central African Republic. This study is the first report to show the circulation of WNV lineage 1 in donkeys in Turkey.


Subject(s)
West Nile virus , Animals , Equidae , Horses , Iran/epidemiology , Phylogeny , Turkey/epidemiology , West Nile virus/genetics
17.
Braz J Microbiol ; 52(3): 1119-1133, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34255309

ABSTRACT

In recent years, Bovine herpesvirus 4 (BoHV-4) has emerged as an attractive gene delivery viral vector, mainly for vaccination purposes in the veterinary field. In the present study, a new infectious clone of the BoHV-4 genome carrying a bacterial artificial chromosome vector (BoHV-4-BAC) was developed by homologous recombination in mammalian cell culture and bacterial systems, and exploited to express a truncated form of glycoprotein D (tgD) of Bovine herpesvirus 1 (BoHV-1) (BoHV-4-tgD∆TK) as a vaccine candidate. This construct's immunogenicity was compared to a DNA vector expressing the same antigen (pC-tgD) in a BALB/c mouse model. After the mice were immunized, total and specific antibody responses, cytokine responses, total splenocyte cells proliferation/cytotoxicity, and virus neutralization assays were conducted to analyze the immune response elicited by both constructs. Mice from both vaccine groups developed significant humoral and cellular immune responses after a booster dose regime was conducted on day 28 post-injection. In almost all immunological assays, BoHV-4-tgDΔTK induced as high an immune response as pC-tgD. In both vaccine constructs, neutralizing antibodies were a significant determining factor in protection against BoHV-1, even after the first injection. We conclude that a BoHV-4-based viral vector offers an effective immunization strategy as an alternative to DNA-based immunization platforms, at least to combat BoHV-1.


Subject(s)
Herpesvirus 1, Bovine , Herpesvirus 4, Bovine , Viral Proteins/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral , Herpesvirus 1, Bovine/genetics , Herpesvirus 1, Bovine/immunology , Herpesvirus 4, Bovine/genetics , Mice , Mice, Inbred BALB C , Viral Proteins/genetics
18.
Lancet ; 398(10296): 213-222, 2021 07 17.
Article in English | MEDLINE | ID: mdl-34246358

ABSTRACT

BACKGROUND: CoronaVac, an inactivated whole-virion SARS-CoV-2 vaccine, has been shown to be well tolerated with a good safety profile in individuals aged 18 years and older in phase 1/2 trials, and provided a good humoral response against SARS-CoV-2. We present the interim efficacy and safety results of a phase 3 clinical trial of CoronaVac in Turkey. METHODS: This was a double-blind, randomised, placebo-controlled phase 3 trial. Volunteers aged 18-59 years with no history of COVID-19 and with negative PCR and antibody test results for SARS-CoV-2 were enrolled at 24 centres in Turkey. Exclusion criteria included (but were not limited to) immunosuppressive therapy (including steroids) within the past 6 months, bleeding disorders, asplenia, and receipt of any blood products or immunoglobulins within the past 3 months. The K1 cohort consisted of health-care workers (randomised in a 1:1 ratio), and individuals other than health-care workers were also recruited into the K2 cohort (randomised in a 2:1 ratio) using an interactive web response system. The study vaccine was 3 µg inactivated SARS-CoV-2 virion adsorbed to aluminium hydroxide in a 0·5 mL aqueous suspension. Participants received either vaccine or placebo (consisting of all vaccine components except inactivated virus) intramuscularly on days 0 and 14. The primary efficacy outcome was the prevention of PCR-confirmed symptomatic COVID-19 at least 14 days after the second dose in the per protocol population. Safety analyses were done in the intention-to-treat population. This study is registered with ClinicalTrials.gov (NCT04582344) and is active but no longer recruiting. FINDINGS: Among 11 303 volunteers screened between Sept 14, 2020, and Jan 5, 2021, 10 218 were randomly allocated. After exclusion of four participants from the vaccine group because of protocol deviations, the intention-to-treat group consisted of 10 214 participants (6646 [65·1%] in the vaccine group and 3568 [34·9%] in the placebo group) and the per protocol group consisted of 10 029 participants (6559 [65·4%] and 3470 [34·6%]) who received two doses of vaccine or placebo. During a median follow-up period of 43 days (IQR 36-48), nine cases of PCR-confirmed symptomatic COVID-19 were reported in the vaccine group (31·7 cases [14·6-59·3] per 1000 person-years) and 32 cases were reported in the placebo group (192·3 cases [135·7-261·1] per 1000 person-years) 14 days or more after the second dose, yielding a vaccine efficacy of 83·5% (95% CI 65·4-92·1; p<0·0001). The frequencies of any adverse events were 1259 (18·9%) in the vaccine group and 603 (16·9%) in the placebo group (p=0·0108) with no fatalities or grade 4 adverse events. The most common systemic adverse event was fatigue (546 [8·2%] participants in the vaccine group and 248 [7·0%] the placebo group, p=0·0228). Injection-site pain was the most frequent local adverse event (157 [2·4%] in the vaccine group and 40 [1·1%] in the placebo group, p<0·0001). INTERPRETATION: CoronaVac has high efficacy against PCR-confirmed symptomatic COVID-19 with a good safety and tolerability profile. FUNDING: Turkish Health Institutes Association.


Subject(s)
Antibodies, Neutralizing , COVID-19 Vaccines/therapeutic use , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/prevention & control , Double-Blind Method , Health Personnel/statistics & numerical data , Humans , Male , Middle Aged , Turkey , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Virion/immunology
19.
Anal Chem ; 93(28): 9719-9727, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34192453

ABSTRACT

SARS-CoV-2 is a human pathogen and the main cause of COVID-19 disease, announced as a global pandemic by the World Health Organization. COVID-19 is characterized by severe conditions, and early diagnosis can make dramatic changes for both personal and public health. Low-cost, easy-to-use diagnostic capabilities can have a very critical role in controlling the transmission of the disease. Here, we are reporting a state-of-the-art diagnostic tool developed with an in vitro synthetic biology approach by employing engineered de novo riboregulators. Our design coupled with a home-made point-of-care device can detect and report the presence of SARS-CoV-2-specific genes. The presence of SARS-CoV-2-related genes triggers the translation of sfGFP mRNAs, resulting in a green fluorescence output. The approach proposed here has the potential of being a game changer in SARS-CoV-2 diagnostics by providing an easy-to-run, low-cost diagnostic capability.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Point-of-Care Systems
20.
Pediatr Infect Dis J ; 40(7): e263-e265, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33990523

ABSTRACT

COVID-19 spread globally and caused over 97 million cases with more than 2 million deaths. There is still ongoing discussion on the duration of infectious interval SARS-CoV-2 infection. Symptomatic children had longer virus shedding and there are some reports of prolonged infectious virus shedding in adults particularly patients having an immunocompromised status. A missense mutation, D614G, in the spike protein of SARS-CoV-2, which has emerged as a predominant clade in Europe and is spreading worldwide that can result in higher viral loads in patients. Herein, we described the longest infectious virus shedding in a previously healthy child infected with SARS-CoV-2 expressing spike D614G substitution.


Subject(s)
COVID-19/virology , Mutation, Missense , SARS-CoV-2/genetics , Virus Shedding , Adolescent , COVID-19/complications , COVID-19/diagnosis , Carrier State/virology , Humans , Immunocompetence , Male , Risk Factors , SARS-CoV-2/pathogenicity , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...