Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 225: 106371, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32978004

ABSTRACT

A geochemical speciation model was developed to predict Distribution coefficients (Kds) of radionuclides (RNs) in rivers. The model takes into account complexation of RNs with inorganic ligands, sorption of RNs with hydrous ferric oxides, complexation of RNs with dissolved and particulate organic carbon (DOC and POC) and sorption and/or co-precipitation of RNs to carbonates. A sorption model of Cs onto clay was also integrated. The tool is also designed to conduct uncertainty and sensitivity analysis. Sensitivity analysis follows a stepwise structured approach, starting from computationally 'inexpensive' Morris method to most costly variance-based EFAST method. A nested Monte Carlo approach was also implemented to separate natural variability and lack of knowledge in global uncertainty assessment. As case studies, Kd distributions were estimated for Co, Mn, Ag and Cs in seven French rivers. Uncertainty analysis allowed to quantify Kd ranges that can be expected when considering all the sensitive parameters together.


Subject(s)
Radiation Monitoring/methods , Water Pollution, Radioactive/statistics & numerical data , Carbonates , Radiation Monitoring/statistics & numerical data , Radioisotopes , Rivers , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL