Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Expr Purif ; 190: 106009, 2022 02.
Article in English | MEDLINE | ID: mdl-34742914

ABSTRACT

The enzymatic conversion of lignocellulosic biomass to fermentable sugars is determined by the enzymatic activity of cellulases; consequently, improving enzymatic activity has attracted great interest in the scientific community. Cocktails of commercial cellulase often have low ß-glucosidase content, leading to the accumulation of cellobiose. This accumulation inhibits the activity of the cellulolytic complex and can be used to determine the enzymatic efficiency of commercial cellulase cocktails. Here, a novel codon optimized ß-glucosidase gene (B-glusy) from Trichoderma reesei QM6a was cloned and expressed in three strains of Escherichia coli (E. coli). The synthetic sequence containing an open reading frame (ORF) of 1491 bp was used to encode a polypeptide of 497 amino acid residues. The ß-glucosidase recombinant protein that was expressed (57 kDa of molecular weight) was purified by Ni agarose affinity chromatography and visualized by SDS-PAGE. The recombinant protein was better expressed in E. coli BL21 (DE3), and its enzymatic activity was higher at neutral pH and 30 °C (22.4 U/mg). Subsequently, the ß-glucosidase was immobilized using magnetite nano-support, after which it maintained >65% of its enzymatic activity from pH 6 to 10, and was more stable than the free enzyme above 40 °C. The maximum immobilization yield had enzyme activity of 97.2%. In conclusion, ß-glucosidase is efficiently expressed in the microbial strain E. coli BL21 (DE3) grown in a simplified culture medium.


Subject(s)
Enzymes, Immobilized , Escherichia coli , Fungal Proteins , Gene Expression , Hypocreales/genetics , Magnetite Nanoparticles/chemistry , beta-Glucosidase , Enzyme Stability , Enzymes, Immobilized/biosynthesis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Enzymes, Immobilized/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Fungal Proteins/biosynthesis , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Hypocreales/enzymology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , beta-Glucosidase/biosynthesis , beta-Glucosidase/chemistry , beta-Glucosidase/genetics , beta-Glucosidase/isolation & purification
2.
J Mol Microbiol Biotechnol ; 29(1-6): 1-9, 2019.
Article in English | MEDLINE | ID: mdl-32325454

ABSTRACT

Recently, biotechnological opportunities have been found in non-Saccharomyces yeasts because they possess metabolic characteristics that lead to the production of compounds of interest. It has been observed that Kluyveromyces marxianus has a great potential in the production of esters, which are aromatic compounds of industrial importance. The genetic bases that govern the synthesis of esters include a large group of enzymes, among which the most important are alcohol acetyl transferases (AATases) and esterases (AEATases), and it is known that some are present in K. marxianus, because it has genetic characteristics like S. cerevisiae. It also has a physiology suitable for biotechnological use since it is the eukaryotic microorganism with the fastest growth rate and has a wide range of thermotolerance with respect to other yeasts. In this work, the enzymatic background of K. marxianus involved in the synthesis of esters is analyzed, based on the sequences reported in the NCBI database.


Subject(s)
Esters/metabolism , Industrial Microbiology , Kluyveromyces/enzymology , Acyltransferases , Alcohol Dehydrogenase , Esterases , Fermentation , Mixed Function Oxygenases , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL
...