Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 82(5): 854-861, 2019 May.
Article in English | MEDLINE | ID: mdl-31013166

ABSTRACT

Outbreaks associated with fresh-cut leafy greens continue to occur despite efforts to implement horticultural practices that minimize introduction of enteric pathogens to the crop. The experimental trials in this study were designed to examine the efficacy of an acetic acid (AA)- and chitosan-based spray treatment, applied 1 day prior to harvest, for reducing the prevalence of Escherichia coli O157:H7 (O157) and Salmonella in field-grown leafy greens contaminated at levels detectable only through enrichment culture. Responses to the treatment solution were variable and depended on the type of leafy green (leafy lettuce, spinach, or cabbage), cultivar, pathogen, and AA concentration (0.3 to 0.7%). No significant differences in E. coli O157 prevalence were found for untreated and treated cabbage heads and spinach plants (P > 0.05). In contrast, treatment significantly affected Salmonella on 'Bravo F1' green cabbage and '7-Green' spinach (P < 0.05), with odds ratios of 2.2 and 3.3 for finding the pathogen on untreated versus treated greens, respectively. Salmonella was also 7.1 times more likely to be found on an untreated lettuce plant than on a lettuce plant sprayed with a 0.7% AA treatment solution (95% confidence interval [CI], 4.1 to 12.2; P < 0.0001). In studies addressing the efficacy of chitosan (0.1 or 0.3%), this chemical failed to reduce the prevalence of either pathogen on lettuce (P > 0.05). Similarly, spraying with 0.3% AA did not affect the prevalence of Salmonella on lettuce plants (P > 0.05); however, treatment solutions with 0.4% AA reduced the likelihood of detecting Salmonella in treated versus untreated plants by 6.6 times (95% CI, 2.1 to 20.9; P = 0.0007). After the lettuce was harvested and hand washed, consumers failed to distinguish either visually or organoleptically between untreated lettuce and lettuce sprayed with an acetic acid solution (P > 0.05). These results indicate that acetic acid could be used to reduce the microbiological risk of preharvest leafy greens.


Subject(s)
Acetic Acid , Chitosan , Escherichia coli O157 , Food Microbiology , Salmonella , Vegetables , Acetic Acid/pharmacology , Brassica/microbiology , Chitosan/pharmacology , Colony Count, Microbial , Escherichia coli O157/drug effects , Food Microbiology/methods , Lactuca/microbiology , Prevalence , Salmonella/drug effects , Spinacia oleracea/microbiology , Vegetables/microbiology
2.
Int J Food Microbiol ; 291: 197-204, 2019 Feb 16.
Article in English | MEDLINE | ID: mdl-30551016

ABSTRACT

Plant genotype has been advocated to have an important role in the fate of enteric pathogens residing in lettuce foliage. This study was therefore undertaken under the premise that different pathogen responses could occur in lettuce cultivars with cultivar selection being one of several hurdles in an overall strategy for controlling foodborne pathogens on field-grown produce. Up to eight lettuce cultivars ('Gabriella', 'Green Star', 'Muir', 'New Red Fire', 'Coastal Star', 'Starfighter', 'Tropicana', and 'Two Star') were examined in these experiments in which the plants were subjected to spray contamination of their foliage with pathogens. In an experiment that addressed internalization of Salmonella, cultivar was determined to be a significant variable (P < 0.05) with 'Gabriella' and 'Muir' being the least and most likely to exhibit internalization of this pathogen, respectively. Furthermore, antimicrobials (total phenols and antioxidant capacity chemicals) could be part of the plant's defenses to resist internalization as there was an inverse relationship between the prevalence of internalization at 1 h and the levels of these antimicrobials (r = -0.75 to -0.80, P = 0.0312 to 0.0165). Internalized cells appeared to be transient residents in that across all cultivars, plants sampled 1 h after being sprayed were 3.5 times more likely to be positive for Salmonella than plants analyzed 24 h after spraying (95% CI from 1.5 to 8.2, P = 0.0035). The fate of surface-resident Salmonella and Escherichia coli O157:H7 was addressed in subsequent growth chamber and field experiments. In the growth chamber study, no effect of cultivar was manifested on the fate of either pathogen when plants were sampled up to 12 days after spray contamination of their foliage. However, in the field study, five days after spraying the plants, Salmonella contamination was significantly affected by cultivar (P < 0.05) and the following order of prevalence of contamination was observed: 'Muir' < 'Gabriella' < 'Green Star' = 'New Red Fire' < 'Coastal Star'. Nine days after spray contamination of plants in the field, no effect of cultivar was exhibited due primarily to the low prevalence of contamination observed for Salmonella (8 of 300 plant samples positive by enrichment culture) and E. coli O157 (4 of 300 plant samples positive by enrichment culture). Given the narrow window of time during which cultivar differences were documented, it is unlikely that cultivar selection could serve as a viable option for reducing the microbiological risk associated with lettuce.


Subject(s)
Escherichia coli O157/isolation & purification , Lactuca/microbiology , Salmonella/isolation & purification , Antioxidants/analysis , Colony Count, Microbial , Food Contamination/analysis , Food Microbiology , Phenols/analysis , Vegetables/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...