Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Isotopes Environ Health Stud ; 59(1): 48-65, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36755410

ABSTRACT

A hydro-geochemical characterization was conducted in the northern part of the Sonora River basin, covering an area of 9400 km2. Equipotential lines indicated that groundwater circulation coincided with the surface water flow direction. Based on the groundwater temperature measured (on average ∼21 °C), only one spring exhibited thermalism (51 °C). Electrical conductivity (160-1750 µS/cm), chloride and nitrate concentrations (>10 and >45 mg/L) imply highly ionized water and anthropogenic pollution. In the river network, δ18O values revealed a clear modern meteoric origin. Focused recharge occurred mainly from the riverbeds during the rainy season. During the dry season, diffuse recharge was characterized by complex return flows from irrigation, urban, agricultural, mining, and livestock. Drilled wells (>50 m) exhibited a strong meteoric origin from higher elevations during the rainy season with minimal hydrochemical anomalies. Our results contribute to the knowledge of mountain-front and mountain-block recharge processes in a semi-arid and human-altered landscape in northern Mexico, historically characterized by limited hydrogeological data.


Subject(s)
Groundwater , Rivers , Humans , Rivers/chemistry , Mexico , Environmental Monitoring/methods , Isotopes/analysis , Groundwater/chemistry , Water
2.
Isotopes Environ Health Stud ; 56(5-6): 431-445, 2020.
Article in English | MEDLINE | ID: mdl-32930001

ABSTRACT

Intensive groundwater use has altered the local hydrological cycle within the Bajío Guanajuatense, Mexico. To improve the knowledge of this hydrogeological system and support water management in the area, groundwater end members were identified using multivariate statistical analysis. Pumped groundwater is composed of two well-mixed end members: (a) recent recharge, affected by a reuse cycle through irrigation where nitrate and chloride evolve and reach levels of 368 mg/L and greater than 100 mg/L, respectively, and (b) deep old groundwater. Mixing estimations show that most wells extract at least 70% of deep groundwater, and some of them extract more than 94%, posing a development and groundwater sustainability conundrum in the area.


Subject(s)
Deuterium/analysis , Environmental Monitoring/methods , Groundwater/analysis , Oxygen Isotopes/analysis , Water Supply/methods , Chlorides/analysis , Groundwater/chemistry , Mexico , Nitrates/analysis , Spatio-Temporal Analysis , Water Cycle , Water Wells
SELECTION OF CITATIONS
SEARCH DETAIL
...