Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451073

ABSTRACT

Inhalation by vaporization is a useful application mode for medical cannabis. In this study, we present the disposition of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors, and their metabolites in serum, oral fluid, and urine together with the acute pharmacological effects in 14 healthy individuals treated with vaporized medical cannabis. THC and CBD peaked firstly in serum and then in oral fluid, with higher concentrations in the first biological matrices and consequent higher area under the curve AUCs. Acidic precursors Δ-9-tetrahydrocannabinolic acid A (THCA) and cannabidiolic acid (CBDA) showed a similar time course profile but lower concentrations due to the fact that vaporization partly decarboxylated these compounds. All THC and CBD metabolites showed a later onset with respect to the parent compounds in the absorption phase and a slower decrease to baseline. In agreement with serum kinetics, THC-COOH-GLUC and 7-COOH-CBD were the significantly most excreted THC and CBD metabolites. The administration of vaporized medical cannabis induced prototypical effects associated with the administration of cannabis or THC in humans, with a kinetic trend overlapping that of parent compounds and metabolites in serum. The pharmacokinetics of cannabinoids, their precursors, and their metabolites in biological fluids of individuals treated with vaporized medical cannabis preparations showed a high interindividual variability as in the case of oral medical cannabis decoction and oil. Inhaled medical cannabis was absorbed into the organism earlier than decoction and oil. Cannabinoids reached higher systemic concentrations, also due to the fact that the acid precursors decarboxylated to parent cannabinoids at high temperatures, and consequently, the physiological and subjective effects occurred earlier and resulted with higher intensity. No serious adverse effects were observed.

2.
Talanta ; 223(Pt 2): 121772, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33298281

ABSTRACT

No analytical assay is currently available for the simultaneous determination of CBD major metabolites in serum or urine samples of individuals treated with medical cannabis or CBD-based pharmaceuticals. We developed and validated a method using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) for quantifying cannabidiol (CBD) and its metabolites, cannabidiol-7-oic acid (7-COOH-CBD), 7- hydroxycannabidiol (7-OH-CBD), 6-alpha-hydroxycannabidiol (6-α-OH-CBD) and 6-beta-hydroxycannabidiol (6-ß-OH-CBD) in serum and urine samples of an individual treated with medical cannabis. The ionization was performed by electrospray in negative mode to reach the sensitivity required to detect trace amounts, with limits of quantification ranging from 0.05 to 0.1 ng/mL. The method is accurate (average inter/intra-day error, <15%), precise (inter/intra-day imprecision, <15%) and fast (8 min run time) and it is an essential tool to investigate CBD pharmacokinetics and pharmacodynamics in individuals treated with medical cannabis or with CBD-based medical preparations.


Subject(s)
Cannabidiol , Cannabis , Medical Marijuana , Cannabidiol/analysis , Chromatography, High Pressure Liquid , Dronabinol/analysis , Humans , Tandem Mass Spectrometry
3.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322849

ABSTRACT

The use of cannabis flowering tops with standardized amounts of active phytocannabinoids was recently authorized in several countries to treat several painful pathological conditions. The acute pharmacological effects and disposition of Δ-9-tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors and THC metabolites after oil and decoction administration have been already described. In this study, the disposition of CBD metabolites: 7-carboxy-cannabidiol (7-COOH-CBD), 7-hydroxycannabidiol (7-OH-CBD), 6-α-hydroxycannabidiol (6-α-OH-CBD), and 6-ß-hydroxycannabidiol (6-ß-OH-CBD) in the serum and urine of healthy volunteers was presented. Thirteen healthy volunteers were administered 100 mL of cannabis decoction in the first experimental session and, after 15 days of washout, 0.45 mL of oil. Serum and urine samples were collected at different time points, and the CBD metabolites were quantified by ultra-high-performance liquid chromatography-tandem mass spectrometry. The most abundant serum metabolite was 7-COOH-CBD, followed by 7-OH-CBD, 6-ß-OH-CBD, and6-α-OH-CBD, after decoction and oil. Both 7-OH-CBD and the 6-α-OH-CBD showed similar pharmacokinetic properties following administration of both cannabis preparations, whereas 7-COOH and 6-α-OH-CBD displayed a significant higher bioavailability after decoction consumption. All CBD metabolites were similarly excreted after oil and decoction intake apart from 6-α-OH-CBD, which had a significantly lower excretion after oil administration. The pharmacokinetic characterization of CBD metabolites is crucial for clinical practice since the cannabis herbal preparations are increasingly used for several pathological conditions.

4.
Medicina (Kaunas) ; 56(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585912

ABSTRACT

BACKGROUND AND OBJECTIVE: Changes in cannabis legalization regimes in several countries have influenced the diversification of cannabis use. There is an ever-increasing number of cannabis forms available, which are gaining popularity for both recreational and therapeutic use. From a therapeutic perspective, oral cannabis containing Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is a promising route of administration but there is still little information about its pharmacokinetics (PK) effects in humans. The purpose of this systematic review is to provide a general overview of the available PK data on cannabis and THC after oral administration. METHODS: A search of the published literature was conducted using the PubMed database to collect available articles describing the PK data of THC after oral administration in humans. RESULTS: The literature search yielded 363 results, 26 of which met our inclusion criteria. The PK of oral THC has been studied using capsules (including oil content), tablets, baked goods (brownies and cookies), and oil and tea (decoctions). Capsules and tablets, which mainly correspond to pharmaceutical forms, were found to be the oral formulations most commonly studied. Overall, the results reflect the high variability in the THC absorption of oral formulations, with delayed peak plasma concentrations compared to other routes of administration. CONCLUSIONS: Oral THC has a highly variable PK profile that differs between formulations, with seemingly higher variability in baked goods and oil forms. Overall, there is limited information available in this field. Therefore, further investigations are required to unravel the unpredictability of oral THC administration to increase the effectiveness and safety of oral formulations in medicinal use.


Subject(s)
Dronabinol/analogs & derivatives , Dronabinol/therapeutic use , Nitrogen Mustard Compounds/therapeutic use , Administration, Oral , Dronabinol/pharmacology , Drug Compounding/methods , Humans , Nitrogen Mustard Compounds/pharmacology
5.
Talanta ; 209: 120537, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31892011

ABSTRACT

Monitoring pharmacological active compounds in pharmaceutical preparations of medical cannabis and in conventional and non-conventional biological matrices of treated individuals use requires both a wide linear range and sensitive detection. We have developed and validated a fast and sensitive method using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) for analysis of Δ-9-tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors Δ-9-tetrahydrocannabinolic acid A (THCA-A) and cannabidiolic acid (CBDA) and some major metabolites of THC such as 11-nor-9-carboxy-THC (THC-COOH), 11-hydroxy-THC (11-OH-THC), Δ-9-THC-Glucuronide (THC-GLUC) and THC-COOH-Glucuronide (THC-COOH-GLUC) in conventional (whole blood and urine) and non-conventional (oral fluid and sweat) of individual treated with medical cannabis preparation. Specifically, THC, THCA-A, CBD and CBD-A were determined in cannabis decoction and oil prepared to treat individuals. The method used positive electrospray ionization (ESI) mode to reach the sensitivity needed to detect minimal amounts of analytes under investigations exposure with limits of quantification ranging from 0.2 to 0.5 ng per milliliter (ng/mL) or ng per patch in case of collected sweat. The validation results indicated this method was accurate (average inter/intra-day error, <10%), precise (inter/intra-day imprecision, <10%), and fast (10 min run time). In addition, time-consuming sample preparation was avoided applying dilute and shoot procedure, meeting the needs for potential large-scale population studies. The analysis of real samples demonstrated a pharmacokinetics of cannabinoids, their precursors and their metabolites dependent from quantity of carboxylated and decarboxylated compounds in pharmaceutical preparations.


Subject(s)
Cannabinoids/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Medical Marijuana/pharmacokinetics , Tandem Mass Spectrometry/methods , Cannabinoids/administration & dosage , Cannabinoids/analysis , Cannabinoids/metabolism , Chromatography, High Pressure Liquid/economics , Humans , Limit of Detection , Medical Marijuana/administration & dosage , Medical Marijuana/analysis , Medical Marijuana/metabolism , Saliva/metabolism , Sweat/metabolism , Tandem Mass Spectrometry/economics , Time Factors
6.
Int J Med Sci ; 15(12): 1286-1295, 2018.
Article in English | MEDLINE | ID: mdl-30275754

ABSTRACT

Cannabis is becoming increasingly present in our society. In recent years, the line between the natural (cannabis) and the synthetic (synthetic cannabinoids), the recreational (cannabis) and the medical (pharmaceutical cannabinoids and medical cannabis) has been crossed. In this paper we review some of the novel aspects of cannabis and cannabinoids in relation to their legal situation, changes in their composition and forms of cannabis use, the concept of medical cannabis, and synthetic cannabinoids as new psychoactive substances (NPS). We have also analyzed serious adverse reactions and intoxications associated with the use of synthetic cannabinoids, as well as the latest developments in the research of pharmaceutical cannabinoids.


Subject(s)
Cannabinoids , Cannabis , Cannabinoids/chemistry , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Legislation, Drug
SELECTION OF CITATIONS
SEARCH DETAIL