Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Tissue Barriers ; 2: e28426, 2014.
Article in English | MEDLINE | ID: mdl-25045600

ABSTRACT

The neuroepithelium is a germinal epithelium containing progenitor cells that produce almost all of the central nervous system cells, including the ependyma. The neuroepithelium and ependyma constitute barriers containing polarized cells covering the embryonic or mature brain ventricles, respectively; therefore, they separate the cerebrospinal fluid that fills cavities from the developing or mature brain parenchyma. As barriers, the neuroepithelium and ependyma play key roles in the central nervous system development processes and physiology. These roles depend on mechanisms related to cell polarity, sensory primary cilia, motile cilia, tight junctions, adherens junctions and gap junctions, machinery for endocytosis and molecule secretion, and water channels. Here, the role of both barriers related to the development of diseases, such as neural tube defects, ciliary dyskinesia, and hydrocephalus, is reviewed.

2.
Neuropathol Appl Neurobiol ; 40(7): 911-32, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24707814

ABSTRACT

AIMS: Here, we tested the hypothesis that glial responses via the production of cytokines such as transforming growth factor-beta 1 (TGFß1) and tumour necrosis factor alpha (TNFα), which play important roles in neurodegenerative diseases, are correlated with the severity of congenital hydrocephalus in the hyh mouse model. We also searched for evidence of this association in human cases of primary hydrocephalus. METHODS: Hyh mice, which exhibit either severe or compensated long-lasting forms of hydrocephalus, were examined and compared with wild-type mice. TGFß1, TNFα and TNFαR1 mRNA levels were quantified using real-time PCR. TNFα and TNFαR1 were immunolocalized in the brain tissues of hyh mice and four hydrocephalic human foetuses relative to astroglial and microglial reactions. RESULTS: The TGFß1 mRNA levels were not significantly different between hyh mice exhibiting severe or compensated hydrocephalus and normal mice. In contrast, severely hydrocephalic mice exhibited four- and two-fold increases in the mean levels of TNFα and TNFαR1, respectively, compared with normal mice. In the hyh mouse, TNFα and TNFαR1 immunoreactivity was preferentially detected in astrocytes that form a particular periventricular reaction characteristic of hydrocephalus. However, these proteins were rarely detected in microglia, which did not appear to be activated. TNFα immunoreactivity was also detected in the glial reaction in the small group of human foetuses exhibiting hydrocephalus that were examined. CONCLUSIONS: In the hyh mouse model of congenital hydrocephalus, TNFα and TNFαR1 appear to be associated with the severity of the disease, probably mediating the astrocyte reaction, neurodegenerative processes and ischaemia.


Subject(s)
Brain/metabolism , Hydrocephalus/metabolism , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Astrocytes/metabolism , Brain/pathology , Disease Models, Animal , Fetus , Humans , Hydrocephalus/pathology , Male , Mice , Microglia/metabolism , RNA, Messenger/metabolism , Severity of Illness Index
3.
Acta Neuropathol ; 124(4): 531-46, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22576081

ABSTRACT

Hydrocephalic hyh mutant mice undergo a programmed loss of the neuroepithelium/ependyma followed by a reaction of periventricular astrocytes, which form a new cell layer covering the denuded ventricular surface. We present a comparative morphological and functional study of the newly formed layer of astrocytes and the multiciliated ependyma of hyh mice. Transmission electron microscopy, immunocytochemistry for junction proteins (N-cadherin, connexin 43) and proteins involved in permeability (aquaporin 4) and endocytosis (caveolin-1, EEA1) were used. Horseradish peroxidase (HRP) and lanthanum nitrate were used to trace the intracellular and paracellular transport routes. The astrocyte layer shares several cytological features with the normal multiciliated ependyma, such as numerous microvilli projected into the ventricle, extensive cell-cell interdigitations and connexin 43-based gap junctions, suggesting that these astrocytes are coupled to play an unknown function as a cell layer. The ependyma and the astrocyte layers also share transport properties: (1) high expression of aquaporin 4, caveolin-1 and the endosome marker EEA1; (2) internalization into endocytic vesicles and early endosomes of HRP injected into the ventricle; (3) and a similar paracellular route of molecules moving between CSF, the subependymal neuropile and the pericapillary space, as shown by lanthanum nitrate and HRP. A parallel analysis performed in human hydrocephalic foetuses indicated that a similar phenomenon would occur in humans. We suggest that in foetal-onset hydrocephalus, the astrocyte assembly at the denuded ventricular walls functions as a CSF-brain barrier involved in water and solute transport, thus contributing to re-establish lost functions at the brain parenchyma-CSF interphase.


Subject(s)
Astrocytes/ultrastructure , Ependyma/ultrastructure , Hydrocephalus/pathology , Animals , Astrocytes/metabolism , Disease Models, Animal , Ependyma/metabolism , Fetus , Fluorescent Antibody Technique , Humans , Hydrocephalus/congenital , Hydrocephalus/metabolism , Immunohistochemistry , Mice , Mice, Mutant Strains , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission
4.
Acta Neuropathol ; 121(6): 721-35, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21311902

ABSTRACT

A heterogeneous population of ependymal cells lines the brain ventricles. The evidence about the origin and birth dates of these cell populations is scarce. Furthermore, the possibility that mature ependymal cells are born (ependymogenesis) or self-renewed (ependymal proliferation) postnatally is controversial. The present study was designed to investigate both phenomena in wild-type (wt) and hydrocephalic α-SNAP mutant (hyh) mice at different postnatal stages. In wt mice, proliferating cells in the ventricular zone (VZ) were only found in two distinct regions: the dorsal walls of the third ventricle and Sylvian aqueduct (SA). Most proliferating cells were monociliated and nestin+, likely corresponding to radial glial cells. Postnatal cumulative BrdU-labeling showed that most daughter cells remained in the VZ of both regions and they lost nestin-immunoreactivity. Furthermore, some labeled cells became multiciliated and GLUT-1+, indicating they were ependymal cells born postnatally. Postnatal pulse BrdU-labeling and Ki-67 immunostaining further demonstrated the presence of cycling multiciliated ependymal cells. In hydrocephalic mutants, the dorsal walls of the third ventricle and SA expanded enormously and showed neither ependymal disruption nor ventriculostomies. This phenomenon was sustained by an increased ependymogenesis. Consequently, in addition to the physical and geometrical mechanisms traditionally explaining ventricular enlargement in fetal-onset hydrocephalus, we propose that postnatal ependymogenesis could also play a role. Furthermore, as generation of new ependymal cells during postnatal stages was observed in distinct regions of the ventricular walls, such as the roof of the third ventricle, it may be a key mechanism involved in the development of human type 1 interhemispheric cysts.


Subject(s)
Brain/pathology , Ependyma/growth & development , Hydrocephalus/pathology , Third Ventricle/physiopathology , Age Factors , Animals , Animals, Newborn , Bromodeoxyuridine/metabolism , Cell Count , Cell Proliferation , Disease Models, Animal , Ependyma/ultrastructure , Gene Expression Regulation, Developmental/physiology , Glial Fibrillary Acidic Protein/metabolism , Glucose Transporter Type 1/metabolism , Mice , Mice, Neurologic Mutants , Microscopy, Electron, Scanning , Proliferating Cell Nuclear Antigen/metabolism , Third Ventricle/cytology , Tubulin/metabolism
5.
J Neuropathol Exp Neurol ; 68(9): 1006-20, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19680142

ABSTRACT

Neural stem cells persist after embryonic development in the subventricular zone (SVZ) niche and produce new neural cells during postnatal life; ependymal cells are a key component associated with this neurogenic niche. In the animal model of human hydrocephalus, the hyh mouse, the ependyma of the lateral ventricles is progressively lost during late embryonic and early postnatal life and disappears from most of the ventricular surface throughout its life span. To determine the potential consequences of this loss on the SVZ, we characterized the abnormalities in this neurogenic niche in hyh mice. There was overall disorganization and a marked reduction of proliferative cells in the SVZ of both newborn and adult hyh hydrocephalic mice in vivo; neuroblasts were displaced to the ventricular surface, and their migration through the rostral migratory stream was reduced. The numbers of resident neural progenitor cells in hyh mice were also markedly reduced, but they were capable of proliferating, forming neurospheres, and differentiating into neurons and glia in vitro in a manner indistinguishable from that of wild-type progenitor cells. These findings suggest that the reduction of proliferative activity observed in vivo is not caused by a cell autonomous defect of SVZ progenitors but is a consequence of a reduced number of these cells. Furthermore, the overall tissue disorganization of the SVZ and displacement of neuroblasts imply alterations in the neurogenic niche of postnatal hyh mice.


Subject(s)
Hydrocephalus/pathology , Lateral Ventricles/pathology , Neurogenesis/physiology , Neurons/pathology , Stem Cells/pathology , Animals , Autoradiography , Cell Differentiation/physiology , Cell Proliferation , Disease Models, Animal , Ependyma/metabolism , Ependyma/pathology , Fluorescent Antibody Technique , Hydrocephalus/genetics , Hydrocephalus/metabolism , Immunohistochemistry , Lateral Ventricles/metabolism , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Neurons/metabolism , Stem Cells/metabolism
6.
Mol Cell Probes ; 23(6): 281-90, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19615440

ABSTRACT

alpha-SNAP is an essential component of the protein machinery responsible for membrane fusion events in different cell types. The hyh (hydrocephalus with hop gait) mouse carries a missense mutation in Napa gene that results in a point mutation (M105I) in alpha-SNAP protein. Homozygous animals for the mutant allele have been identified by the clinical and/or neuropathological phenotype, or by direct sequencing of PCR products. The aims of the present study were (i) to develop a high-throughput technique to genotype hyh mice, (ii) to correlate genotype-phenotype, and (iii) to analyze the earliest pathological changes of hyh mutant mice. As no restriction sites are affected by the hyh mutation, we resolved this problem by creating a BspHI restriction site with a modified (mismatch) polymerase chain reaction (PCR) primer in wild-type allele. This artificially created restriction site (ACRS)-PCR technique is a simple, rapid and reliable method to genotype hyh mice in a day-work procedure. Biochemical and histological analysis of genotyped hyh embryos at different developmental stages allowed us to identify and characterize the earliest brain pathological changes of the hyh phenotype, including the first signs of neuroepithelial disruption and neuronal ectopia. In addition, genotype-phenotype analysis of 327 animals confirmed that (i) hyh is a single-gene autosomal recessive disorder, and (ii) the disorder has 100% penetrance (i.e., the mutation was only present in affected mice). The genotyping method described here enhances the potentiality of hyh mouse as a unique in vivo model to study the role of membrane trafficking in different developmental and physiological processes.


Subject(s)
Abnormalities, Multiple/pathology , Mutation, Missense , Polymerase Chain Reaction/methods , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics , Abnormalities, Multiple/embryology , Abnormalities, Multiple/genetics , Animals , Base Sequence , Blotting, Western , Brain/abnormalities , Brain/metabolism , Female , Genes, Recessive , Genotype , Hydrocephalus/pathology , Immunohistochemistry , Lameness, Animal/pathology , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Mutant Strains , Phenotype , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism , Time Factors
7.
J Neuropathol Exp Neurol ; 66(12): 1082-92, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18090917

ABSTRACT

Hyh mutant mice develop long-lasting hydrocephalus and represent a good model for investigating neuropathologic events associated with hydrocephalus. The study of their brains by use of lectin binding, bromodeoxyuridine labeling, immunochemistry, and scanning electron microscopy revealed that certain events related to hydrocephalus followed a well-defined pattern. A program of neuroepithelium/ependyma denudation was initiated at embryonic day 12 and terminated at the end of the second postnatal week. After the third postnatal week the denuded areas remained permanently devoid of ependyma. In contrast, a selective group of ependymal areas resisted denudation throughout the lifespan. Ependymal denudation triggered neighboring astrocytes to proliferate. These astrocytes expressed particular glial markers and formed a superficial cell layer replacing the lost ependyma. The loss of the neuroepithelium/ependyma layer at specific regions of the ventricular walls and at specific stages of brain development would explain the fact that only certain brain structures had abnormal development. Therefore, commissural axons forming the corpus callosum and the hippocampal commissure displayed abnormalities, whereas those forming the anterior and posterior commissures did not; and the brain cortex was not homogenously affected, with the cingular and frontal cortices being the most altered regions. All of these telencephalic alterations developed at stages when hydrocephalus was not yet patent at the lateral ventricles, indicating that abnormal neural development and hydrocephalus are linked at the etiologic level, rather than the former being a consequence of the latter. All evidence collected on hydrocephalic hyh mutant mice indicates that a primary alteration in the neuroepithelium/ependyma cell lineage triggers both hydrocephalus and abnormalities in telencephalic development.


Subject(s)
Brain/abnormalities , Brain/pathology , Gene Expression Regulation, Developmental/physiology , Hydrocephalus , Microfilament Proteins/genetics , Animals , Animals, Newborn , Brain/ultrastructure , Bromodeoxyuridine/metabolism , Disease Models, Animal , Disease Progression , Embryo, Mammalian , Ependyma/abnormalities , Ependyma/pathology , Female , Gene Expression Regulation, Developmental/genetics , Hydrocephalus/genetics , Hydrocephalus/pathology , Hydrocephalus/physiopathology , Male , Mice , Mice, Mutant Strains , Nerve Tissue Proteins/metabolism , Pregnancy
8.
Neurobiol Dis ; 23(1): 152-68, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16697210

ABSTRACT

The hyh mouse carrying a point mutation in the gene encoding for soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein alpha (alpha-SNAP) develops inherited hydrocephalus. The investigation was designed to study: (i) the clinical evolution of hyh mice; (ii) factors other than the alpha-SNAP mutation that may influence the expression of hydrocephalus; (iii) the neuropathological features underlying the different forms of clinical evolution. The study included 3017 mice, 22.4% of which were hydrocephalic. The neuropathological study was performed in 112 mice by use of light and electron microscopy. It was found that maternal- and sex-related factors are involved in the heterogeneous expression of hyh phenotype. The clinical evolution recorded throughout a 4-year period also revealed a heterogeneous expression of the hydrocephalic phenotype. Two subpopulations were distinguished: (i) 70% of mice underwent a rapidly progressive hydrocephalus and died during the first 2 months of life; they presented macrocephaly, extremely large expansion of the ventricles, equilibrium impairment and decreased motor activity. (ii) Mice with slowly progressive hydrocephalus (30%) survived for periods ranging between 2 months and 2 years. They had no or moderate macrocephaly; moderate ventricular dilatation and preserved general motor activity; they all presented spontaneous ventriculostomies communicating the ventricles with the subarachnoid space, indicating that such communications play a key role in the long survival of these mice. The hyh mutant represents an ideal animal model to investigate how do the brain "adapt" to a virtually life-lasting hydrocephalus.


Subject(s)
Disease Models, Animal , Hydrocephalus/genetics , Hydrocephalus/pathology , Mice , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics , Animals , Female , Hydrocephalus/physiopathology , Immunohistochemistry , Male , Maternal Age , Mice, Mutant Strains , Microscopy, Electron, Scanning , Parity , Phenotype , Point Mutation , Pregnancy , Sex Factors
9.
J Neuropathol Exp Neurol ; 64(7): 595-604, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16042311

ABSTRACT

In mutant rodents, ependymal denudation occurs early in fetal life, preceding the onset of a communicating hydrocephalus, and is a key event in the etiology of this disease. The present investigation was designed to obtain evidence whether or not ependymal denudation occurs in 16- to 40-week-old human fetuses developing a communicating hydrocephalus (n = 8) as compared to fetuses of similar ages with no neuropathologic alterations (n = 15). Sections through the walls of the cerebral aqueduct and lateral ventricles were processed for lectin binding and immunocytochemistry using antibodies against ependyma, astroglia, neuroblasts, and macrophages markers. Anticaveolin was used as a functional marker of the fetal ependyma. The structural and functional molecular markers are differentially expressed throughout the differentiation of the human fetal ependyma. Denudation of the ependyma of the aqueduct and lateral ventricles occurred in all fetuses developing a communicating hydrocephalus, including the youngest ones studied. The denuded surface area increased in parallel with the fetus age. The possibility is advanced that in many or most cases of human fetal hydrocephalus there is a common defect at the ependymal cell lineage leading to ependymal detachment. Evidence was obtained that in hydrocephalic human fetuses a process to repair the denuded areas takes place during the fetal life. In hydrocephalic fetuses, detachment of the ependyma of the lateral ventricles resulted in the (i) loss of the germinal ependymal zone, (ii) disorganization of the subventricular zone and, (iii) abnormal migration of neuroblasts into the ventricular cavity. Thus, detachment of the ependymal layer in hydrocephalic fetuses would not only be associated with the pathogenesis of hydrocephalus but also to abnormal neurogenesis.


Subject(s)
Cerebral Aqueduct/pathology , Ependyma/pathology , Hydrocephalus/pathology , Lateral Ventricles/pathology , Cerebral Aqueduct/metabolism , Ependyma/embryology , Ependyma/metabolism , Female , Fetal Diseases/metabolism , Fetal Diseases/pathology , Fetus , Humans , Hydrocephalus/metabolism , Immunohistochemistry , Lateral Ventricles/metabolism , Male
10.
Cell Tissue Res ; 317(1): 65-77, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15197646

ABSTRACT

Dopamine receptors have been found in certain populations of non-neuronal cells in the brain, viz., discrete areas of ciliated ependyma and the ependymal cells of the choroid plexus. We have studied the presence of both tyrosine-hydroxylase-immunoreactive nerve fibers and dopamine receptors in the subcommissural organ (SCO), an ependymal brain gland that is located in the roof of the third ventricle and that secretes, into the cerebrospinal fluid, glycoproteins that aggregate to form Reissner's fiber (RF). Antibodies against D2, D3, D4, and D5 dopamine receptors were used in immunoblots of bovine striatum, fresh SCO, and organ-cultured SCO, and in immunocytochemistry of the bovine, rat, and mouse SCO. Only a few tyrosine-hydroxylase fibers appeared to reach the SCO. However, virtually all the secretory ependymal and hypendymal cells of the SCO immunoreacted with antibodies against D2, D4, and D5 receptors, with the last-mentioned rendering the strongest reaction, especially at the ventricular cell pole of the secretory ependymocytes, suggesting that dopamine might reach the SCO via the cerebrospinal fluid. The antibodies against the four subtypes of receptors revealed corresponding bands in immunoblots of striatum and fresh SCO. Although the cultured SCO displayed dopamine receptors, dopamine had no apparent effect on the expression of the SCO-spondin gene/protein or on the release of RF-glycoproteins (SCO-spondin included) by SCO explants, suggesting that dopamine affects the function(s) of the SCO differently from the secretion of RF-glycoproteins.


Subject(s)
Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Subcommissural Organ/metabolism , Animals , Cattle , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cells, Cultured , Mice , Mice, Inbred C57BL , Nerve Fibers/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, Dopamine D3 , Receptors, Dopamine D4 , Receptors, Dopamine D5 , Subcommissural Organ/cytology , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...