Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 52, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168038

ABSTRACT

The mechanochemical GTPase dynamin-related protein 1 (Drp1) catalyzes mitochondrial and peroxisomal fission, but the regulatory mechanisms remain ambiguous. Here we find that a conserved, intrinsically disordered, six-residue Short Linear Motif at the extreme Drp1 C-terminus, named CT-SLiM, constitutes a critical allosteric site that controls Drp1 structure and function in vitro and in vivo. Extension of the CT-SLiM by non-native residues, or its interaction with the protein partner GIPC-1, constrains Drp1 subunit conformational dynamics, alters self-assembly properties, and limits cooperative GTP hydrolysis, surprisingly leading to the fission of model membranes in vitro. In vivo, the involvement of the native CT-SLiM is critical for productive mitochondrial and peroxisomal fission, as both deletion and non-native extension of the CT-SLiM severely impair their progression. Thus, contrary to prevailing models, Drp1-catalyzed membrane fission relies on allosteric communication mediated by the CT-SLiM, deceleration of GTPase activity, and coupled changes in subunit architecture and assembly-disassembly dynamics.


Subject(s)
Dynamins , GTP Phosphohydrolases , Dynamins/metabolism , GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Hydrolysis , Membrane Fusion , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism
2.
Res Sq ; 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37503116

ABSTRACT

The mechanochemical GTPase dynamin-related protein 1 (Drp1) catalyzes mitochondrial fission, but the regulatory mechanisms remain ambiguous. Here we found that a conserved, intrinsically disordered, six-residue Short Linear Motif at the extreme Drp1 C-terminus, named CT-SLiM, constitutes a critical allosteric site that controls Drp1 structure and function in vitro and in vivo. Extension of the CT-SLiM by non-native residues, or its interaction with the protein partner GIPC-1, constrains Drp1 subunit conformational dynamics, alters self-assembly properties, and limits cooperative GTP hydrolysis, leading to the fission of model membranes in vitro. In vivo, the availability of the native CT-SLiM is a requirement for productive mitochondrial fission, as both non-native extension and deletion of the CT-SLiM severely impair its progression. Thus, contrary to prevailing models, Drp1-catalyzed mitochondrial fission relies on allosteric communication mediated by the CT-SLiM, deceleration of GTPase activity, and coupled changes in subunit architecture and assembly-disassembly dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL