Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Microbiol ; 9(8): 2113-2127, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39090390

ABSTRACT

Several human-adapted Mycobacterium tuberculosis complex (Mtbc) lineages exhibit a restricted geographical distribution globally. These lineages are hypothesized to transmit more effectively among sympatric hosts, that is, those that share the same geographical area, though this is yet to be confirmed while controlling for exposure, social networks and disease risk after exposure. Using pathogen genomic and contact tracing data from 2,279 tuberculosis cases linked to 12,749 contacts from three low-incidence cities, we show that geographically restricted Mtbc lineages were less transmissible than lineages that have a widespread global distribution. Allopatric host-pathogen exposure, in which the restricted pathogen and host are from non-overlapping areas, had a 38% decrease in the odds of infection among contacts compared with sympatric exposures. We measure tenfold lower uptake of geographically restricted lineage 6 strains compared with widespread lineage 4 strains in allopatric macrophage infections. We conclude that Mtbc strain-human long-term coexistence has resulted in differential transmissibility of Mtbc lineages and that this differs by human population.


Subject(s)
Host-Pathogen Interactions , Mycobacterium tuberculosis , Sympatry , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/classification , Tuberculosis/transmission , Tuberculosis/microbiology , Tuberculosis/epidemiology , Contact Tracing , Female , Adult , Male , Macrophages/microbiology , Incidence , Phylogeny
2.
Microbiol Spectr ; 11(3): e0501322, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37222610

ABSTRACT

Whole genome sequencing (WGS) has become the main tool for studying the transmission of Mycobacterium tuberculosis complex (MTBC) strains; however, the clonal expansion of one strain often limits its application in local MTBC outbreaks. The use of an alternative reference genome and the inclusion of repetitive regions in the analysis could potentially increase the resolution, but the added value has not yet been defined. Here, we leveraged short and long WGS read data of a previously reported MTBC outbreak in the Colombian Amazon Region to analyze possible transmission chains among 74 patients in the indigenous setting of Puerto Nariño (March to October 2016). In total, 90.5% (67/74) of the patients were infected with one distinct MTBC strain belonging to lineage 4.3.3. Employing a reference genome from an outbreak strain and highly confident single nucleotide polymorphisms (SNPs) in repetitive genomic regions, e.g., the proline-glutamic acid/proline-proline-glutamic-acid (PE/PPE) gene family, increased the phylogenetic resolution compared to a classical H37Rv reference mapping approach. Specifically, the number of differentiating SNPs increased from 890 to 1,094, which resulted in a more granular transmission network as judged by an increasing number of individual nodes in a maximum parsimony tree, i.e., 5 versus 9 nodes. We also found in 29.9% (20/67) of the outbreak isolates, heterogenous alleles at phylogenetically informative sites, suggesting that these patients are infected with more than one clone. In conclusion, customized SNP calling thresholds and employment of a local reference genome for a mapping approach can improve the phylogenetic resolution in highly clonal MTBC populations and help elucidate within-host MTBC diversity. IMPORTANCE The Colombian Amazon around Puerto Nariño has a high tuberculosis burden with a prevalence of 1,267/100,000 people in 2016. Recently, an outbreak of Mycobacterium tuberculosis complex (MTBC) bacteria among the indigenous populations was identified with classical MTBC genotyping methods. Here, we employed a whole-genome sequencing-based outbreak investigation in order to improve the phylogenetic resolution and gain new insights into the transmission dynamics in this remote Colombian Amazon Region. The inclusion of well-supported single nucleotide polymorphisms in repetitive regions and a de novo-assembled local reference genome provided a more granular picture of the circulating outbreak strain and revealed new transmission chains. Multiple patients from different settlements were possibly infected with at least two different clones in this high-incidence setting. Thus, our results have the potential to improve molecular surveillance studies in other high-burden settings, especially regions with few clonal multidrug-resistant (MDR) MTBC lineages/clades.


Subject(s)
Mycobacterium tuberculosis , Humans , Phylogeny , Colombia/epidemiology , Genome, Bacterial , Disease Outbreaks , Indigenous Peoples
3.
Malar J ; 14: 233, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26040274

ABSTRACT

BACKGROUND: The chemical treatment of Plasmodium falciparum for human infections is losing efficacy each year due to the rise of resistance. One possible strategy to find novel anti-malarial drugs is to access the largest reservoir of genomic biodiversity source on earth present in metagenomes of environmental microbial communities. METHODS: A bioluminescent P. falciparum parasite was used to quickly detect shifts in viability of microcultures grown in 96-well plates. A synthetic gene encoding the Dermaseptin 4 peptide was designed and cloned under tight transcriptional control in a large metagenomic insert context (30 kb) to serve as proof-of-principle for the screening platform. RESULTS: Decrease in parasite viability consistently correlated with bioluminescence emitted from parasite microcultures, after their exposure to bacterial extracts containing a plasmid or fosmid engineered to encode the Dermaseptin 4 anti-malarial peptide. CONCLUSIONS: Here, a new technical platform to access the anti-malarial potential in microbial environmental metagenomes has been developed.


Subject(s)
Antimalarials/pharmacology , Genomic Library , Parasitic Sensitivity Tests , Plant Extracts/pharmacology , Plants/chemistry , Plasmodium falciparum/drug effects , Biodiversity , Malaria, Falciparum/drug therapy , Metagenome , Plasmodium falciparum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL