Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Infect Dis (Lond) ; 56(3): 206-219, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38160682

ABSTRACT

BACKGROUND: Vector-borne diseases like West Nile virus (WNV) pose a global health challenge, with rising incidence and distribution. Culex mosquitoes are crucial WNV vectors. Avian species composition and bird community diversity, along with vector communities, influence WNV transmission patterns. However, limited knowledge exists on their impact in southwestern Spain, an area with active WNV circulation in wild birds, mosquitoes, and humans. METHODS: To address this, we conducted a comprehensive study investigating the contributions of migratory and exotic bird species to WNV transmission and the influence of mosquito community composition. RESULTS: Analysing 1194 serum samples from 44 avian species, we detected WNV antibodies in 32 samples from 11 species, four for the first time in Europe. Migratory birds had higher WNV exposure likelihood than native and exotic species, and higher phylogenetic diversity in bird communities correlated with lower exposure rates. Moreover, in 5859 female mosquitoes belonging to 12 species, we identified WNV competent vectors like Cx. pipiens s.l. and the Univittatus subgroup. Birds with WNV antibodies were positively associated with competent vector abundance, but negatively with overall mosquito species richness. CONCLUSIONS: These findings highlight the complex interactions between bird species, their phylogenetics, and mosquito vectors in WNV transmission. Understanding these dynamics will help to implement effective disease control strategies in southwestern Spain.


Subject(s)
Culex , Culicidae , West Nile Fever , West Nile virus , Animals , Female , Humans , West Nile virus/genetics , West Nile Fever/epidemiology , West Nile Fever/veterinary , Phylogeny , Mosquito Vectors , Birds , Antibodies, Viral
2.
Pathogens ; 12(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003824

ABSTRACT

The presence of SARS-CoV-2 antibodies was examined over 7 months in a population of essential service workers exposed during the first epidemic wave in Madrid (Spain). Results obtained with different serological assays were compared. Firstly, serum samples obtained in April 2020 were analyzed using eleven SARS-CoV-2 antibody detection methods, including seven ELISAs, two CLIAs and two LFAs. While all of the ELISA tests and the Roche eCLIA method showed good performance, it was poorer for the Abbott CLIA and LFA tests. Sera from 115 workers with serologically positive results in April were collected 2 and 7 months after the first sampling and were analyzed using five of the tests previously assessed. The results showed that while some ELISA tests consistently detected the presence of anti-SARS-CoV-2 antibodies even 7 months after first detection, other methods, such as the Abbott CLIA test, showed an important reduction in sensitivity for these mature antibodies. The sensitivity increased after establishing new cut-off values, calculated taking into account both recent and old infections, suggesting that an adjustment of assay parameters may improve the detection of individuals exposed to the infection.

3.
Front Cell Infect Microbiol ; 13: 1163467, 2023.
Article in English | MEDLINE | ID: mdl-37396301

ABSTRACT

Introduction: West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonotic arboviruses sharing the same life cycle with mosquitoes as vectors and wild birds as reservoir hosts. The main objective of this study was to characterize the pathogenicity and course of infection of two viral strains (WNV/08 and USUV/09) co-circulating in Southern Spain in a natural host, the red-legged partridge (Alectoris rufa), and to compare the results with those obtained with the reference strain WNV/NY99. Methods: WNV inoculated birds were monitored for clinical and analytical parameters (viral load, viremia, and antibodies) for 15 days post-inoculation. Results and discussion: Partridges inoculated with WNV/NY99 and WNV/08 strains showed clinical signs such as weight loss, ruffled feathers, and lethargy, which were not observed in USUV/09-inoculated individuals. Although statistically significant differences in mortality were not observed, partridges inoculated with WNV strains developed significantly higher viremia and viral loads in blood than those inoculated with USUV. In addition, the viral genome was detected in organs and feathers of WNV-inoculated partridges, while it was almost undetectable in USUV-inoculated ones. These experimental results indicate that red-legged partridges are susceptible to the assayed Spanish WNV with pathogenicity similar to that observed for the prototype WNV/NY99 strain. By contrast, the USUV/09 strain was not pathogenic for this bird species and elicited extremely low viremia levels, demonstrating that red-legged partridges are not a competent host for the transmission of this USUV strain.


Subject(s)
Bird Diseases , Galliformes , West Nile Fever , West Nile virus , Humans , Animals , West Nile Fever/veterinary , Spain , Viremia/veterinary , Mosquito Vectors , West Nile virus/genetics
4.
Pathogens ; 12(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36678431

ABSTRACT

West Nile virus (WNV) transmission rate is shaped by the interaction between virus reservoirs and vectors, which may be maximized in farm environments. Based on this hypothesis, we screened for WNV in wild birds in three scenarios with decreasing gradient of interaction with horses: (i) the farm (A1); (ii) the neighborhood (A2); and (iii) a wild area (A3). We captured wild birds and analyzed their sera for WNV antibodies by blocking ELISA and micro-virus neutralization test. Flavivirus infections were tested with generic and specific PCR protocols. We parameterized linear mixed models with predictors (bird abundance and diversity, vector abundance, vector host abundance, and weather quantities) to identify Flavivirus spp. and WNV exposure risk factors. We detected a low rate of Flavivirus infections by PCR (0.8%) and 6.9% of the birds were seropositive by ELISA. Exposure to Flavivirus spp. was higher in A1 (9%) than in A2 and A3 (5.6% and 5.8%, respectively). Bird diversity was the most relevant predictor of exposure risk and passerines dominated the on-farm bird community. Our results suggest that measures deterring the use of the farm by passerines should be implemented because the environmental favorability of continental Mediterranean environments for WNV is increasing and more outbreaks are expected.

5.
Arch Dis Child ; 107(11): 1051-1058, 2022 11.
Article in English | MEDLINE | ID: mdl-35688603

ABSTRACT

OBJECTIVES: To evaluate the performance of oral saliva swab (OSS) reverse transcription PCR (RT-PCR) compared with RT-PCR and antigen rapid diagnostic test (Ag-RDT) on nasopharyngeal swabs (NPS) for SARS-CoV-2 in children. DESIGN: Cross-sectional multicentre diagnostic study. SETTING: Study nested in a prospective, observational cohort (EPICO-AEP) performed between February and March 2021 including 10 hospitals in Spain. PATIENTS: Children from 0 to 18 years with symptoms compatible with Covid-19 of ≤5 days of duration were included. Two NPS samples (Ag-RDT and RT-PCR) and one OSS sample for RT-PCR were collected. MAIN OUTCOME: Performance of Ag-RDT and RT-PCR on NPS and RT-PCR on OSS sample for SARS-CoV-2. RESULTS: 1174 children were included, aged 3.8 years (IQR 1.7-9.0); 73/1174 (6.2%) patients tested positive by at least one of the techniques. Sensitivity and specificity of OSS RT-PCR were 72.1% (95% CI 59.7 to 81.9) and 99.6% (95% CI 99 to 99.9), respectively, versus 61.8% (95% CI 49.1 to 73) and 99.9% (95% CI 99.4 to 100) for the Ag-RDT. Kappa index was 0.79 (95% CI 0.72 to 0.88) for OSS RT-PCR and 0.74 (95% CI 0.65 to 0.84) for Ag-RDT versus NPS RT-PCR. CONCLUSIONS: RT-PCR on the OSS sample is an accurate option for SARS-CoV-2 testing in children. A less intrusive technique for younger patients, who usually are tested frequently, might increase the number of patients tested.


Subject(s)
COVID-19 , Child , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , COVID-19 Testing , Saliva , Reverse Transcription , Prospective Studies , Cross-Sectional Studies , Sensitivity and Specificity , Polymerase Chain Reaction
6.
Vet Med Sci ; 8(3): 1271-1275, 2022 05.
Article in English | MEDLINE | ID: mdl-35263508

ABSTRACT

BACKGROUND: Crimean-Congo haemorrhagic fever (CCHF) is a widespread tick-borne zoonosis with reported detection of virus and/or virus-specific antibodies from over 57 countries across Africa, Asia, Europe and the Middle East and is endemic in the Balkans. Detection of Crimean-Congo Haemorrhagic Fever Virus (CCHFV) antibodies in domestic ruminants has been important in providing initial evidence of virus circulation and in localising CCHFV high-risk spots for human infection. OBJECTIVES: The present study investigated the possible exposure of sheep to CCHFV in Bosnia and Herzegovina (B&H). METHODS: To investigate the presence of anti-CCHFV antibodies in sheep, all sera (n = 176) were tested using multi-species double antigen enzyme-linked immunosorbent assay (ELISA). Reactive sera were further complementary tested by adapted commercial indirect immunofluorescence assay (IFA) using FITC-conjugated protein G instead of anti-human immunoglobulins. RESULTS: CCHFV specific antibodies were detected in 17 (9.66%) animals using ELISA test. All negative sera were determined as negative by both tests, while 13 out of 17 ELISA-positive reactors were also determined as unambiguously positive by IFA test. The age group with the highest proportion of seropositive rectors were the oldest animals. CONCLUSIONS: This is the first report of anti-CCHFV antibodies in sheep from B&H providing the evidence of CCHFV circulation in the country's sheep population. So far, these findings indicate the circulation of the virus in the westernmost region of the Balkans and point to the potential CCHFV spread further out of this endemic area.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Ticks , Animals , Bosnia and Herzegovina/epidemiology , Enzyme-Linked Immunosorbent Assay/veterinary , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Sheep
7.
Pathogens ; 10(6)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199167

ABSTRACT

West Nile virus (WNV) is the most widespread flavivirus in the world with a wide vertebrate host range. Its geographic expansion and activity continue to increase with important human and equine outbreaks and local bird mortality. In a previous experiment, we demonstrated the susceptibility of 7-week-old red-legged partridges (Alectoris rufa) to Mediterranean WNV isolates Morocco/2003 and Spain/2007, which varied in virulence for this gallinaceous species. Here we study the pathogenesis of the infection with these two strains to explain the different course of infection and mortality. Day six post-inoculation was critical in the course of infection, with the highest viral load in tissues, the most widespread virus antigen, and more severe lesions. The most affected organs were the heart, liver, and spleen. Comparing infections with Morocco/2003 and Spain/2007, differences were observed in the viral load, virus antigen distribution, and lesion nature and severity. A more acute and marked inflammatory reaction (characterized by participation of microglia and CD3+ T cells) as well as neuronal necrosis in the brain were observed in partridges infected with Morocco/2003 as compared to those infected with Spain/2007. This suggests a higher neurovirulence of Morocco/2003, probably related to one or more specific molecular determinants of virulence different from Spain/2007.

8.
Pathogens ; 9(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322276

ABSTRACT

The increasing incidence of West Nile virus (WNV) in the Euro-Mediterranean area warrants the implementation of effective surveillance programs in animals. A crucial step in the fight against the disease is the evaluation of the capacity of the veterinary labs to accurately detect the infection in animal populations. In this context, the animal virology network of the MediLabSecure project organized an external quality assessment (EQA) to evaluate the WNV molecular and serological diagnostic capacities of beneficiary veterinary labs. Laboratories from 17 Mediterranean and Black Sea countries participated. The results of the triplex real time RT-PCR for simultaneous detection and differentiation of WNV lineage 1 (L1), lineage 2 (L2) and Usutu virus (USUV) were highly satisfactory, especially for L1 and L2, with detection rates of 97.9% and 100%, respectively. For USUV, 75% of the labs reported correct results. More limitations were observed for the generic detection of flaviviruses using conventional reverse-transcription polymerase chain reaction (RT-PCR), since only 46.1% reported correct results in the whole panel. As regards the serological panel, the results were excellent for the generic detection of WNV antibodies. More variability was observed for the specific detection of IgM antibodies with a higher percentage of incorrect results mainly in samples with low titers. This EQA provides a good overview of the WNV (and USUV) diagnostic performance of the involved veterinary labs and demonstrates that the implemented training program was successful in upgrading their diagnostic capacities.

9.
PLoS One ; 15(9): e0239478, 2020.
Article in English | MEDLINE | ID: mdl-32986725

ABSTRACT

Rift Valley fever (RVF) is an arboviral zoonosis that primarily affects ruminants but can also cause illness in humans. The increasing impact of RVF in Africa and Middle East and the risk of expansion to other areas such as Europe, where competent mosquitos are already established, require the implementation of efficient surveillance programs in animal populations. For that, it is pivotal to regularly assess the performance of existing diagnostic tests and to evaluate the capacity of veterinary labs of endemic and non-endemic countries to detect the infection in an accurate and timely manner. In this context, the animal virology network of the MediLabSecure project organized between October 2016 and March 2017 an external quality assessment (EQA) to evaluate the RVF diagnostic capacities of beneficiary veterinary labs. This EQA was conceived as the last step of a training curriculum that included 2 diagnostic workshops that were organized by INIA-CISA (Spain) in 2015 and 2016. Seventeen veterinary diagnostic labs from 17 countries in the Mediterranean and Black Sea regions participated in this EQA. The exercise consisted of two panels of samples for molecular and serological detection of the virus. The laboratories were also provided with positive controls and all the kits and reagents necessary to perform the recommended diagnostic techniques. All the labs were able to apply the different protocols and to provide the results on time. The performance was good in the molecular panel with 70.6% of participants reporting 100% correct results, and excellent in the serological panel with 100% correct results reported by 94.1% of the labs. This EQA provided a good overview of the RVFV diagnostic capacities of the involved labs and demonstrated that most of them were able to correctly identify the virus genome and antibodies in different animal samples.


Subject(s)
Rift Valley Fever/diagnosis , Animals , Black Sea , Culicidae , Europe , Genome, Viral , Humans , Laboratories , Mediterranean Sea , Rift Valley Fever/virology , Rift Valley fever virus/genetics , Ruminants
10.
Vaccines (Basel) ; 8(3)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967268

ABSTRACT

Reported human cases of West Nile virus (WNV) in Europe increased dramatically in 2018. Lineage 1 strains had been circulating in Euro-Mediterranean countries since the early 1990s. The subsequent introduction of WNV lineage 2 has been responsible for the remarkable upsurge of European WNV outbreaks since 2004, including the dramatic increase in human cases observed since 2018. The virus exists in a natural cycle between mosquitoes and wild birds, with humans and horses acting as dead-end hosts. As the key vertebrate hosts in the transmission cycle of WNV, avian species have been the focus of surveillance across many countries. Raptors appear particularly susceptible to WNV infection, resulting in higher prevalence, and in some cases exhibiting neurological signs that lead to the death of the animal. In addition, birds of prey are known to play an important role as WNV reservoir and potentially amplifying hosts of infection. Importantly, raptor higher susceptibility/prevalence may indicate infection through predation of infected prey. Consequently, they are considered important target species when designing cost-effective surveillance for monitoring both seasonal WNV circulation in endemic countries and its emergence into new areas, where migrating raptors may play a critical role in virus introduction. This review summarizes the different aspects of the current knowledge of WNV infection in birds of prey and evaluates their role in the evolution of the epizootic that is spreading throughout Europe.

11.
Diagn Microbiol Infect Dis ; 98(4): 115167, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32890908

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 8 million people worldwide, becoming a pandemic. Detecting antibodies against SARS-CoV-2 is of utmost importance and a good indicator of exposure and circulation of the virus within the general population. Two serological tools based on a double recognition assay [enzyme-linked immunosorbent assay (DR-ELISA) and lateral flow assay (DR-LFA)] to detect total antibodies to SARS-CoV-2 have been developed based on the recombinant nucleocapsid protein. A total of 1065 serum samples, including positive for COVID-19 and negative samples from healthy donors or infected with other respiratory pathogens, were analyzed. The results showed values of sensitivity between 91.2% and 100%, and specificity of 100% and 98.2% for DR-LFA and DR-ELISA, respectively. No cross-reactivity against seasonal coronavirus (HCoV-NL63, HCoV-229E, HCoV-HKU1, HCoV-OC43) was found. These results demonstrate the importance of serology as a complementary tool to polymerase chain reaction for follow-up of recovered patients and identification of asymptomatic individuals.


Subject(s)
Antibodies, Viral/blood , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Immunoassay/methods , Mass Screening/methods , Pneumonia, Viral/diagnosis , Point-of-Care Testing , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Common Cold/diagnosis , Common Cold/virology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Nucleocapsid Proteins/immunology , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
12.
Biomed Res Int ; 2020: 4832360, 2020.
Article in English | MEDLINE | ID: mdl-32382554

ABSTRACT

BACKGROUND: One Health is receiving attention for arbovirus infection prevention and control and for defining national "intersectoral" priorities. Increasing awareness of intersectoral priorities through multisectorial risk assessments (MRA) is promising, where data are not systematically shared between sectors. Towards this aim, the MediLabSecure project organized three MRA exercises (hereby called exercises): one on West Nile virus, one on Crimean-Congo haemorrhagic fever, and one on Rift Valley fever, assessing the added value of this approach. METHODS: The exercises relied on RA methodologies of international organisations. Country representatives of the human and animal virology, medical entomology, and public health sectors (hereby called "sectors") involved in the surveillance of vector-borne diseases participated in the exercises. Background documentation was provided before each exercise, and a guide was developed for the facilitators. All three exercises included technical and methodological presentations and a guided RA directed at bringing into play the different sectors involved. To assess the added value of the approach, each participant was asked to rank the level of perceived benefit of the multisectoral collaboration for each "risk question" included in the exercises. RESULTS: In total, 195 participants from 19 non-EU countries in the Mediterranean and Black Sea regions took part in the exercises. The participants assessed the multisectoral approach as valuable in analysing comprehensively the situation by having access to information and knowledge provided by each of the sectors involved. Sharing of information and discussion facilitated reaching a consensus on the level of risk in each country. CONCLUSIONS: Increasing awareness of intersectoral priorities, including cross-border ones, through MRA is relevant to reduce gaps due to unavailability of shared data and information. Given that six out of the ten threats to global health listed by WHO are occurring at the human-animal-environmental interfaces, comprehensive regional RA with a One Health approach made by national authorities can be a relevant added value for the global health security.


Subject(s)
Arbovirus Infections , Global Health , One Health , Animals , Arbovirus Infections/epidemiology , Arbovirus Infections/prevention & control , Humans , Risk Assessment
13.
Front Vet Sci ; 7: 203, 2020.
Article in English | MEDLINE | ID: mdl-32373639

ABSTRACT

High impact, mosquito-borne flaviviruses such as West Nile virus (WNV), Usutu virus (USUV), Japanese encephalitis virus (JEV), Tembusu virus (TMUV), and Bagaza/Israel turkey meningoencephalomyelitis virus (BAGV/ITV) are emerging in different areas of the world. These viruses belong to the Japanese encephalitis (JE) serocomplex (JEV, WNV, and USUV) and the Ntaya serocomplex (TMUV and BAGV/ITV). Notably, they share transmission route (mosquito bite) and reservoir host type (wild birds), and some of them co-circulate in the same areas, infecting overlapping mosquito and avian population. This may simplify epidemiological surveillance, since it allows the detection of different infections targeting the same population, but also represents a challenge, as the diagnostic tools applied need to detect the whole range of flaviviruses surveyed, and correctly differentiate between these closely related pathogens. To this aim, a duplex real-time RT-PCR (dRRT-PCR) method has been developed for the simultaneous and differential detection of JE and Ntaya flavivirus serocomplexes. The method has been standardized and evaluated by analyzing a panel of 49 flaviviral and non-flaviviral isolates, and clinical samples of different bird species obtained from experimental infections or from the field, proving its value for virus detection in apparently healthy or suspicious animals. This new dRRT-PCR technique is a reliable, specific and highly sensitive tool for rapid detection and differentiation of JE and Ntaya flavivirus groups in either domestic or wild animals. This novel method can be implemented in animal virology diagnostic laboratories as screening tool in routine surveillance and in the event of bird encephalitis emergence.

14.
PLoS Negl Trop Dis ; 13(6): e0007314, 2019 06.
Article in English | MEDLINE | ID: mdl-31194743

ABSTRACT

BACKGROUND: The Mediterranean Basin is historically a hotspot for trade, transport, and migration. As a result, countries surrounding the Mediterranean Sea share common public health threats. Among them are vector-borne diseases, and in particular, mosquito-borne viral diseases are prime candidates as (re)emerging diseases and are likely to spread across the area. Improving preparedness and response capacities to these threats at the regional level is therefore a major issue. The implementation of entomological surveillance is, in particular, of utmost importance. Guidance in designing entomological surveillance systems is critical, and these systems may pursue different specific objectives depending on the disease. The purpose of the proposed review is to draw up guidelines for designing effective and sustainable entomological surveillance systems in order to improve preparedness and response. However, we make it clear that there is no universal surveillance system, so the thinking behind harmonisation is to define evidence-based standards in order to promote best practises, identify the most appropriate surveillance activities, and optimise the use of resources. Such guidance is aimed at policymakers and diverse stakeholders and is intended to be used as a framework for the implementation of entomological surveillance programmes. It will also be useful to collaborate and share information with health professionals involved in other areas of disease surveillance. Medical entomologists and vector control professionals will be able to refer to this report to advocate for tailored entomological surveillance strategies. The main threats targeted in this review are the vectors of dengue virus, chikungunya virus, Zika virus, West Nile virus, and Rift Valley fever virus. The vectors of all these arboviruses are mosquitoes. METHODS: Current knowledge on vector surveillance in the Mediterranean area is reviewed. The analysis was carried out by a collaboration of the medical entomology experts in the region, all of whom belong to the MediLabSecure network, which is currently funded by the European Union and represents an international effort encompassing 19 countries in the Mediterranean and Black Sea region. FINDINGS: Robust surveillance systems are required to address the globalisation of emerging arboviruses. The prevention and management of mosquito-borne viral diseases must be addressed in the prism of a One Health strategy that includes entomological surveillance as an integral part of the policy. Entomological surveillance systems should be designed according to the entomological and epidemiological context and must have well-defined objectives in order to effect a tailored and graduated response. We therefore rely on different scenarios according to different entomological and epidemiological contexts and set out detailed objectives of surveillance. The development of multidisciplinary networks involving both academics and public authorities will provide resources to address these health challenges by promoting good practises in surveillance (identification of surveillance aims, design of surveillance systems, data collection, dissemination of surveillance results, evaluation of surveillance activities) and through the sharing of effective knowledge and information. These networks will also contribute to capacity building and stronger collaborations between sectors at both the local and regional levels. Finally, concrete guidance is offered on the vector of the main arbovirus based on the current situation in the area.


Subject(s)
Disease Transmission, Infectious , Epidemiological Monitoring , Insect Vectors/growth & development , Insect Vectors/virology , Virus Diseases/transmission , Viruses/isolation & purification , Animals , Humans , Insect Vectors/classification , Mediterranean Region , Viruses/classification
15.
Transbound Emerg Dis ; 66(5): 2100-2106, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31150146

ABSTRACT

This study aims at assessing the serological cross-reactions existing between three mosquito-borne flaviviruses with avian reservoirs co-circulating in Europe: West Nile (WNV), Usutu (USUV) and Bagaza (BAGV). The study is useful for a better interpretation of serological results in diagnostics and surveillance. Serum samples obtained from a natural host, the red-legged partridge (Alectoris rufa), experimentally infected with WNV, USUV or BAGV were analysed using two commercially available WNV competition ELISAs suitable for serological surveillance, and by the confirmatory virus neutralization test (VNT). The ELISAs examined showed different levels of specificity for WNV, as judged by cross-reaction observed with the other flaviviruses. By VNT, virus-specific antibodies were confirmed in 80%, 50% or 0% of sera from WNV-, BAGV-, or USUV-inoculated birds, respectively. The results indicate how the co-circulation of cross-reacting flaviviruses may affect the outcomes of WNV serological surveillance when applying currently available serological tools. On the one hand, the choice of the ELISA test for antibody screening should consider the differences found in specificity, since one test is more specific for WNV while the other one is more suitable for detection of a broader range of flavivirus antibodies. On the other hand, besides corroborating that cross-neutralization occurs between flaviviruses from different serocomplexes (WNV/USUV and BAGV), this study points out that cross-neutralization between WNV and USUV is not symmetric, and reveals the difficulty to identify USUV infections serologically. This finding indicates that actual USUV infections might be underestimated in the current diagnostic schemes.


Subject(s)
Flavivirus Infections/veterinary , Flavivirus/isolation & purification , West Nile Fever/epidemiology , West Nile virus/isolation & purification , Animals , Antibodies, Viral/blood , Birds/virology , Cross Reactions , Culicidae/virology , Enzyme-Linked Immunosorbent Assay/veterinary , Epidemiological Monitoring , Europe
16.
Vet Microbiol ; 222: 39-45, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30080671

ABSTRACT

West Nile virus (WNV; genus Flavivirus; family Flaviviridae) is the aetiological agent of an emerging, mosquito-borne disease with great impact on human and animal health. Over the past 15 years, WNV has been responsible for large epidemics mainly in North America but also in Europe, where lineage 1 and more recently lineage 2 strains have caused an upsurge in the number of outbreaks with increased human infection and higher virulence for certain wild bird species. This study aimed to compare the course of infection of the lineage 1 WNV strains Israel/98 and Italy/08 and the lineage 2 strain Austria/08 in the red-legged partridge (Alectoris rufa), a gallinaceous bird indigenous to the Iberian Peninsula and widely distributed in Southern and Western Europe. After experimental inoculation, clinical and analytic parameters (viraemia, viral load, antibodies) were examined over a period of 15 days. All inoculated birds became viremic and showed clinical disease, with a morbidity rate of 100% and mortality rates between 22.2 and 55.5% depending on the virus strain. The red-legged partridge demonstrated to be a competent host for transmission of the three investigated WNV isolates with the highest competence index observed for the Italian strain. Likewise, this strain was the most pathogenic causing the highest viral loads in blood, organs, feathers and oral and cloacal secretions. These experimental results indicate that the red-legged partridge is highly susceptible to the infection with lineage 1 and 2 WNV strains and that this species may act as an amplifying host for both WNV lineages.


Subject(s)
Bird Diseases/epidemiology , Host-Pathogen Interactions , Quail/virology , West Nile Fever/veterinary , West Nile virus/isolation & purification , Animals , Antibodies, Viral , Austria/epidemiology , Bird Diseases/mortality , Bird Diseases/transmission , Bird Diseases/virology , Europe/epidemiology , Humans , Israel/epidemiology , Italy/epidemiology , Viral Load , Viremia , West Nile Fever/epidemiology , West Nile Fever/mortality , West Nile Fever/virology , West Nile virus/pathogenicity
17.
J Virol Methods ; 260: 41-44, 2018 10.
Article in English | MEDLINE | ID: mdl-29958922

ABSTRACT

West Nile Virus (WNV) belongs to the Flaviviridae family, genus Flavivirus, which includes other emerging arthropod-borne viruses (arboviruses) pathogenic for animals and/or humans. West Nile Virus is a genetically diverse RNA virus with at least 7 different recognized lineages. Following its recent introduction and subsequent expansion to the Americas, WNV is currently one of the most widely spread arboviruses in the world having recently re-emerged in the Mediterranean basin, Central and Eastern Europe. Laboratory tests are essential to confirm WNV infection and monoclonal antibodies represent useful tools for the development of diagnostic assays. A monoclonal antibody, 1D11, recognizing an epitope in the domain III of the envelope glycoprotein of WNV, was selected for this study. Its suitability to detect a range of WNV variants representative of its whole genetic range, and to differentiate it from other flaviviruses and arboviruses, was assessed by means of an immunochromatographic assay in an LFA format. A panel of cell culture supernatants infected with 9 different WNV isolates representing a wide range of genetic lineages, and 16 non-WNV arboviruses, including flaviviruses closely related to WNV, were tested. The mAb correctly detected all WNV strains, and did not react with any of the non-WNV arboviruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Viral Envelope Proteins/immunology , West Nile Fever/diagnosis , West Nile virus/classification , West Nile virus/isolation & purification , Animals , Chlorocebus aethiops , Chromatography, Affinity , Cross Reactions/immunology , Epitopes , Humans , Vero Cells , Viral Load , West Nile virus/immunology
18.
Vet Res ; 49(1): 44, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29739470

ABSTRACT

Bagaza virus (BAGV; synonymous to Israel turkey meningoencephalomyelitis virus, ITV) is a relevant arthropod-borne epornitic flavivirus. In its first emergence in Europe (southern Spain, 2010) BAGV caused an outbreak, severely affecting red-legged partridges and common pheasants. The effects (pathogenicity, role as reservoir host) of BAGV in other European phasianids are unknown. To fill this gap, grey partridges were experimentally infected with BAGV. The clinical course of the disease was severe, with neurological signs, significant weight loss and 40% mortality. Low viral loads in the blood and the absence of contact transmission suggest a limited-if any-role on BAGV transmission for this European phasianid.


Subject(s)
Bird Diseases/physiopathology , Flavivirus Infections/veterinary , Flavivirus/physiology , Flavivirus/pathogenicity , Galliformes , Animals , Bird Diseases/mortality , Bird Diseases/virology , Female , Flavivirus Infections/mortality , Flavivirus Infections/physiopathology , Flavivirus Infections/virology , Host-Pathogen Interactions , Male , Virulence
19.
Article in English | MEDLINE | ID: mdl-29534445

ABSTRACT

In the context of One Health, there is presently an effort to integrate surveillance of human, animal, entomological, and environmental sectors. This aims to strengthen the prevention of, and preparedness against, arbovirus infections, also in the light of environmental and climate changes that could increase the risk of transmission. However, criteria to define integrated surveillance, and to compare different systems, still need to be identified and tested. We conducted a scoping review to identify and examine surveillance systems for West Nile virus (WNV), chikungunya virus (CHKV), dengue virus (DENV), and Rift Valley fever virus (RVFV), which involve human, animal, entomological, and environmental sectors. We analyzed findings using a conceptual framework we developed for this purpose. The review highlights that the criteria proposed in the conceptual framework to describe integrated surveillance are consistently reported in the context of studies and programs related to integrated surveillance of the selected arboviral diseases. These criteria can facilitate the identification and description of operationalized One Health surveillance.


Subject(s)
Arbovirus Infections , Epidemiological Monitoring , One Health , Animals , Black Sea , Chikungunya virus , Dengue Virus , Humans , Mediterranean Region , West Nile Fever , West Nile virus
20.
Sci Rep ; 8(1): 2599, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422507

ABSTRACT

Mosquito community composition plays a central role in the transmission of zoonotic vector-borne pathogens. We evaluated how the mosquito community affects the seroprevalence of West Nile virus (WNV) in house sparrows along an urbanisation gradient in an area with the endemic circulation of this virus. We sampled 2544 birds and 340829 mosquitoes in 45 localities, analysed in 15 groups, each containing one urban, one rural and one natural area. WNV seroprevalence was evaluated using an epitope-blocking ELISA kit and a micro virus-neutralization test (VNT). The presence of WNV antibodies was confirmed in 1.96% and 0.67% of birds by ELISA and VNT, respectively. The VNT-seropositive birds were captured in rural and natural areas, but not in urban areas. Human population density was zero in all the localities where VNT-positive birds were captured, which potentially explains the low incidence of human WNV cases in the area. The prevalence of neutralizing antibodies against WNV was positively correlated with the abundance of the ornithophilic Culex perexiguus but negatively associated with the abundance of the mammophilic Ochlerotatus caspius and Anopheles atroparvus. These results suggest that the enzootic circulation of WNV in Spain occurs in areas with larger populations of Cx. perexiguus and low human population densities.


Subject(s)
Mosquito Vectors/virology , Sparrows/virology , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus/isolation & purification , Animals , Anopheles/virology , Culex/virology , Humans , Ochlerotatus/virology , Population Density , Seroepidemiologic Studies , Spain/epidemiology , West Nile Fever/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...