Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
Add more filters










Publication year range
1.
Chimia (Aarau) ; 78(6): 384-389, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38946410

ABSTRACT

Curious about how chemistry can contribute to sustainable development? In this overview, we explain the essence of NCCR funding, the research focus and structural goals of NCCR Catalysis, and how these align with the sustainable development goals (SDGs). Additionally, we highlight opportunities for getting involved with our program.

2.
Nat Commun ; 15(1): 5844, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992019

ABSTRACT

Developing efficient catalysts for syngas-based higher alcohol synthesis (HAS) remains a formidable research challenge. The chain growth and CO insertion requirements demand multicomponent materials, whose complex reaction dynamics and extensive chemical space defy catalyst design norms. We present an alternative strategy by integrating active learning into experimental workflows, exemplified via the FeCoCuZr catalyst family. Our data-aided framework streamlines navigation of the extensive composition and reaction condition space in 86 experiments, offering >90% reduction in environmental footprint and costs over traditional programs. It identifies the Fe65Co19Cu5Zr11 catalyst with optimized reaction conditions to attain higher alcohol productivities of 1.1 gHA h-1 gcat-1 under stable operation for 150 h on stream, a 5-fold improvement over typically reported yields. Characterization reveals catalytic properties linked to superior activities despite moderate higher alcohol selectivities. To better reflect catalyst demands, we devise multi-objective optimization to maximize higher alcohol productivity while minimizing undesired CO2 and CH4 selectivities. An intrinsic trade-off between these metrics is uncovered, identifying Pareto-optimal catalysts not readily discernible by human experts. Finally, based on feature-importance analysis, we formulate data-informed guidelines to develop performance-specific FeCoCuZr systems. This approach goes beyond existing HAS catalyst design strategies, is adaptable to broader catalytic transformations, and fosters laboratory sustainability.

3.
Green Chem ; 26(11): 6461-6469, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38840851

ABSTRACT

New and enhanced processes will not be the only drivers toward a sustainable chemical industry. Implementing climate policies will impact all components of the chemical supply chain over the following decades, making improvements in energy generation, material extraction, or transportation contribute to reducing the overall impacts of chemical technologies. Including this synergistic effect when comparing technologies offers a clearer vision of their future potential and may allow researchers to support their sustainability propositions more strongly. Ammonia and methanol production account for more than fifty percent of the CO2 emissions in this industry and are, therefore, excellent case studies. This work performs a prospective life cycle assessment until 2050 for fossil, blue, wind, and solar-based technologies under climate policies aiming to limit the global temperature rise to 1.5 °C, 2 °C, or 3.5 °C. The first finding is the inability of fossil-based routes to reduce their CO2 emissions beyond 10% by 2050 without tailored decarbonisation strategies, regardless of the chemical and climate policy considered. In contrast, green routes may produce chemicals with around 90% fewer emissions than today and even with net negative emissions (on a cradle-to-gate basis), as in the case of methanol (up to -1.4 kg CO2-eq per kg), mainly due to the contributions of technology development and increasing penetration of renewable energies. Overall, the combined production of these chemicals could be net-zero by 2050 despite their predicted two to fivefold increase in demand. Lastly, we propose a roadmap for progressive implementation by 2050 of green routes in 26 regions worldwide, applying the criterion of at least 80% reduction in climate change impacts when compared to their fossil alternatives. Furthermore, an exploratory prospective techno-economic assessment showed that by 2050, green routes could become more economically attractive. This work offers quantitative arguments to reinforce research, development, and policymaking efforts on green chemical routes reliant on renewable energies.

4.
ChemSusChem ; : e202400865, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924309

ABSTRACT

Transitioning from both the direct and indirect use of fossil fuels to the renewable and sustainable resources of the near future demands a focal shift in catalysis research - from investigating catalytic reactions in isolation to developing coupled reactions for modern chemical value chains. In this Perspective, we discuss the status and emerging prospects of coupled catalytic reactions across various scales and provide key examples. Besides being a sustainable and essential alternative to current fossil-based processes, the coupling of catalytic reactions offers novel and scalable pathways to value-added chemicals. By emphasizing the specific requirements and challenges arising from coupled reactions, we aim to identify and underscore research needs that are critical to expedite their development and to fully unlock their potential for chemical and fuel production.

5.
Angew Chem Int Ed Engl ; 63(26): e202318676, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38570864

ABSTRACT

Chemistry, a vital tool for sustainable development, faces a challenge due to the lack of clear guidance on actionable steps, hindering the optimal adoption of sustainability practices across its diverse facets from discovery to implementation. This Scientific Perspective explores established frameworks and principles, proposing a conciliated set of triple E priorities anchored on Environmental, Economic, and Equity pillars for research and decision making. We outline associated metrics, crucial for quantifying impacts, classifying them according to their focus areas and scales tackled. Emphasizing catalysis as a key driver of sustainable synthesis of chemicals and materials, we exemplify how triple E priorities can practically guide the development and implementation of processes from renewables conversions to complex customized products. We summarize by proposing a roadmap for the community aimed at raising awareness, fostering academia-industry collaboration, and stimulating further advances in sustainable chemical technologies across their broad scope.

6.
Nat Commun ; 15(1): 3101, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600146

ABSTRACT

Metal promotion could unlock high performance in zinc-zirconium catalysts, ZnZrOx, for CO2 hydrogenation to methanol. Still, with most efforts devoted to costly palladium, the optimal metal choice and necessary atomic-level architecture remain unclear. Herein, we investigate the promotion of ZnZrOx catalysts with small amounts (0.5 mol%) of diverse hydrogenation metals (Re, Co, Au, Ni, Rh, Ag, Ir, Ru, Pt, Pd, and Cu) prepared via a standardized flame spray pyrolysis approach. Cu emerges as the most effective promoter, doubling methanol productivity. Operando X-ray absorption, infrared, and electron paramagnetic resonance spectroscopic analyses and density functional theory simulations reveal that Cu0 species form Zn-rich low-nuclearity CuZn clusters on the ZrO2 surface during reaction, which correlates with the generation of oxygen vacancies in their vicinity. Mechanistic studies demonstrate that this catalytic ensemble promotes the rapid hydrogenation of intermediate formate into methanol while effectively suppressing CO production, showcasing the potential of low-nuclearity metal ensembles in CO2-based methanol synthesis.

7.
Environ Sci Technol ; 58(15): 6628-6636, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38497595

ABSTRACT

Biomass waste-derived engineered biochar for CO2 capture presents a viable route for climate change mitigation and sustainable waste management. However, optimally synthesizing them for enhanced performance is time- and labor-intensive. To address these issues, we devise an active learning strategy to guide and expedite their synthesis with improved CO2 adsorption capacities. Our framework learns from experimental data and recommends optimal synthesis parameters, aiming to maximize the narrow micropore volume of engineered biochar, which exhibits a linear correlation with its CO2 adsorption capacity. We experimentally validate the active learning predictions, and these data are iteratively leveraged for subsequent model training and revalidation, thereby establishing a closed loop. Over three active learning cycles, we synthesized 16 property-specific engineered biochar samples such that the CO2 uptake nearly doubled by the final round. We demonstrate a data-driven workflow to accelerate the development of high-performance engineered biochar with enhanced CO2 uptake and broader applications as a functional material.


Subject(s)
Carbon Dioxide , Problem-Based Learning , Charcoal , Adsorption
8.
Angew Chem Int Ed Engl ; 63(17): e202401060, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38451557

ABSTRACT

C1 coupling reactions over zeolite catalysts are central to sustainable chemical production strategies. However, questions persist regarding the involvement of CO in ketene formation, and the impact of this elusive oxygenate intermediate on reactivity patterns. Using operando photoelectron photoion coincidence spectroscopy (PEPICO), we investigate the role of CO in methyl chloride conversion to hydrocarbons (MCTH), a prospective process for methane valorization with a reaction network akin to methanol to hydrocarbons (MTH) but without oxygenate intermediates. Our findings reveal the transformative role of CO in MCTH at the low pressures, inducing ketene formation in MCTH and boosting olefin production, confirming the Koch carbonylation step in the initial stages of C1 coupling. We uncover pressure-dependent product distributions driven by CO-induced ketene formation, and its subsequent desorption from the zeolite surface, which is enhanced at low pressure. Inspired by the above results, extension of the co-feeding approach to CH3OH as another simple oxygenate showcases the additional potential for improved catalyst stability in MCTH at ambient pressure.

9.
Angew Chem Int Ed Engl ; 63(20): e202401056, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38472115

ABSTRACT

Single-atom heterogeneous catalysts (SACs) hold promise as sustainable alternatives to metal complexes in organic transformations. However, their working structure and dynamics remain poorly understood, hindering advances in their design. Exploiting the unique features of droplet-based microfluidics, we present the first in-situ assessment of a palladium SAC based on exfoliated carbon nitride in Suzuki-Miyaura cross-coupling using X-ray absorption spectroscopy. Our results confirm a surface-catalyzed mechanism, revealing the distinct electronic structure of active Pd centers compared to homogeneous systems, and providing insights into the stabilizing role of ligands and bases. This study establishes a valuable framework for advancing mechanistic understanding of organic syntheses catalyzed by SACs.

10.
ChemSusChem ; 17(4): e202400133, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38264978

ABSTRACT

Invited for this month's cover is the group of Javier Pérez-Ramírez at ETH Zürich, which collaborated with the group of Tsvetelina Merdzhanova at Forschungszentrum Jülich. The image shows how artificial leaves, able to recycle carbon dioxide into syngas of variable composition, could be integrated with chemical plants. The Research Article itself is available at 10.1002/cssc.202301398.

11.
ChemSusChem ; 17(4): e202301398, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-37975726

ABSTRACT

Artificial leaves (a-leaves) can reduce carbon dioxide into syngas using solar power and could be combined with thermo- and biocatalytic technologies to decentralize the production of valuable products. By providing variable CO : H2 ratios on demand, a-leaves could facilitate optimal combinations and control the distribution of products in most of these hybrid systems. However, the current design procedures of a-leaves concentrate on achieving high performance for a predetermined syngas composition. This study demonstrates that incorporating the electrolyte flow as a design variable enables flexible production without compromising performance. The concept was tested on an a-leaf using a commercial cell, a Cu2 O:Inx cathodic catalyst, and an inexpensive amorphous silicon thin-film photovoltaic module. Syngas with CO : H2 ratio in the range of 1.8-2.3 could be attained with only 2 % deviation from the optimal cell voltage and controllable solely by catholyte flow. These features could be beneficial for downstream technologies such as Fischer-Tropsch synthesis and anaerobic fermentation.

12.
Adv Mater ; 36(5): e2307991, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37757786

ABSTRACT

Ultra-high-density single-atom catalysts (UHD-SACs) present unique opportunities for harnessing cooperative effects between neighboring metal centers. However, the lack of tools to establish correlations between the density, types, and arrangements of isolated metal atoms and the support surface properties hinders efforts to engineer advanced material architectures. Here, this work precisely describes the metal center organization in various mono- and multimetallic UHD-SACs based on nitrogen-doped carbon (NC) supports by coupling transmission electron microscopy with tailored machine-learning methods (released as a user-friendly web app) and density functional theory simulations. This approach quantifies the non-negligible presence of multimers with increasing atom density, characterizes the size and shape of these low-nuclearity clusters, and identifies surface atom density criteria to ensure isolation. Further, it provides previously inaccessible experimental insights into coordination site arrangements in the NC host, uncovering a repulsive interaction that influences the disordered distribution of metal centers in UHD-SACs. This observation holds in multimetallic systems, where chemically-specific analysis quantifies the degree of intermixing. These fundamental insights into the materials chemistry of single-atom catalysts are crucial for designing catalytic systems with superior reactivity.

13.
Angew Chem Int Ed Engl ; 63(11): e202317526, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38105396

ABSTRACT

Catalytic hydrogenolysis has the potential to convert high-density polyethylene (HDPE), which comprises about 30 % of plastic waste, into valuable alkanes. Most investigations have focused on increasing activity for lab grade HDPEs displaying low molecular weight, with limited mechanistic understanding of the product distribution. No efficient catalyst is available for consumer grades due to their lower reactivity. This study targets HDPE used in bottle caps, a waste form generated globally at a rate of approximately one million units per hour. Ultrafine ruthenium particles (1 nm) supported on titania (anatase) achieved up to 80 % conversion into light alkanes (C1 -C45 ) under mild conditions (498 K, 20 bar H2 , 4 h) and were reused for three cycles. Small ruthenium nanoparticles were critical to achieving relevant conversions, as activity sharply decreased with particle size. Selectivity commonalities and peculiarities across HDPE grades were disclosed by a reaction modelling approach applied to products. Isomerization cedes to backbone scission as the reaction progresses. Within this trend, low molecular weight favor isomerization whilst high molecular weight favor cleavage. Commercial caps obeyed this trend with decreased activity, anticipating the influence of additives in realistic processing. This study demonstrates effective hydrogenolysis of consumer grade polyethylene and provides selectivity patterns for product control.

15.
Chimia (Aarau) ; 77(3): 127-131, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-38047815

ABSTRACT

Scaling up syntheses from mg to kg quantities is a complex endeavor. Besides adapting laboratory protocols to industrial processes and equipment and thorough safety assessments, much attention is paid to the reduction of the process' environmental impact. For processes including transition metal catalyzed steps, e.g. cross-coupling chemistry, this impact strongly depends on the identity of the metal used. As such, a key approach is the replacement of single-use with reusable heterogeneous catalysts. Transition metal single-atom heterogeneous catalysts (SAC), a novel class of catalytic materials, might exhibit all the necessary properties to step up to this task. This article shall discuss current applications of SAC in cross-coupling chemistry from the point of a process chemist and shed light on the NCCR Catalysis contribution to the field. Investigations of the stability-activity-selectivity relationship of SACs in combination with early-stage life-cycle assessments (LCA) of potential processes lay the foundation for large-scale application tailored catalyst synthesis. Ultimately, prevailing challenges are highlighted, which need to be addressed in future research.

16.
Chimia (Aarau) ; 77(3): 132-138, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-38047816

ABSTRACT

Understanding the reaction mechanism is critical yet challenging in heterogeneous catalysis. Reactive intermediates, e.g., radicals and ketenes, are short-lived and often evade detection. In this review, we summarize recent developments with operando photoelectron photoion coincidence (PEPICO) spectroscopy as a versatile tool capable of detecting elusive intermediates. PEPICO combines the advantages of mass spectrometry and the isomer-selectivity of threshold photoelectron spectroscopy. Recent applications of PEPICO in understanding catalyst synthesis and catalytic reaction mechanisms involving gaseous and surface-confined radical and ketene chemistry will be summarized.

17.
Chimia (Aarau) ; 77(3): 150-153, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-38047819

ABSTRACT

Intense efforts have been devoted to developing green and blue centralised Haber-Bosch processes (gHB and bHB, respectively), but the feasibility of a decentralised and sustainable scheme has yet to be assessed. Here we reveal the conditions under which small-scale systems based on the electrocatalytic reduction of nitrogen (eN2R) powered by photovoltaic energy (NH3-leaf) could become a competitive technology in terms of environmental criteria. To this end, we calculated energy efficiency targets based on solar irradiation atlases to guide research in the incipient eN2R field. Even under this germinal state, the NH3-leaf technology would compete favourably in sunny locations relative to the business-as-usual production scenario. The disclosed sustainability potential of NH3-leaf makes it a strong ally of gHB toward a non-fossil ammonia production.

18.
ACS Sustain Chem Eng ; 11(48): 16935-16945, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38076617

ABSTRACT

Single-atom heterogeneous catalysts (SACs) attract growing interest in their application in green chemistry and organic synthesis due to their potential for achieving atomic-level precision. These catalysts offer the possibility of achieving selectivity comparable to the traditionally applied organometallic complexes, while enhancing metal utilization and recovery. However, an understanding of SAC performance in organic reactions remains limited to model substrates, and their application as drop-in solutions may not yield optimal activity. Here, we investigate the previously unaddressed influence of the reaction environment, including solvent, base, cocatalyst, and ligand, on the performance of a palladium SAC in Sonogashira-Hagihara cross-couplings. By examining the effects of different solvents using the established criteria, we find that the behavior of the SAC deviates from trends observed with homogeneous catalysts, indicating a distinct interplay between heterogeneous systems and the reaction environment. Our results illustrate the satisfactory performance of SACs in cross-couplings of aryl iodides and acetylenes with electron-withdrawing and -donating groups, while the use of bromides and chlorides remains challenging. Extending the proof-of-concept stage to multigram scale, we demonstrate the synthesis of an intermediate of the anticancer drug Erlotinib. The catalyst exhibits high stability, allowing for multiple reuses, even under noninert conditions. Life-cycle assessment guides the upscaling of the catalyst preparation and quantifies the potential environmental and financial benefits of using the SAC, while also revealing the negligible impact of the PPh3 ligand and CuI cocatalyst. Our results underscore the significant potential of SACs to revolutionize sustainable organic chemistry and highlight the need for further understanding the distinct interplay between their performance and the reaction environment.

19.
Nat Commun ; 14(1): 7964, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042926

ABSTRACT

Synthesis protocol exploration is paramount in catalyst discovery, yet keeping pace with rapid literature advances is increasingly time intensive. Automated synthesis protocol analysis is attractive for swiftly identifying opportunities and informing predictive models, however such applications in heterogeneous catalysis remain limited. In this proof-of-concept, we introduce a transformer model for this task, exemplified using single-atom heterogeneous catalysts (SACs), a rapidly expanding catalyst family. Our model adeptly converts SAC protocols into action sequences, and we use this output to facilitate statistical inference of their synthesis trends and applications, potentially expediting literature review and analysis. We demonstrate the model's adaptability across distinct heterogeneous catalyst families, underscoring its versatility. Finally, our study highlights a critical issue: the lack of standardization in reporting protocols hampers machine-reading capabilities. Embracing digital advances in catalysis demands a shift in data reporting norms, and to this end, we offer guidelines for writing protocols, significantly improving machine-readability. We release our model as an open-source web application, inviting a fresh approach to accelerate heterogeneous catalysis synthesis planning.

20.
ACS Catal ; 13(24): 15977-15990, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38125976

ABSTRACT

The development of selective catalysts for direct conversion of ammonia into nitrous oxide, N2O, will circumvent the conventional five-step manufacturing process and enable its wider utilization in oxidation catalysis. Deviating from commonly accepted catalyst design principles for this reaction, reliant on manganese oxide, we herein report an efficient system comprised of isolated chromium atoms (1 wt %) stabilized in the ceria lattice by coprecipitation. The latter, in contrast to a simple impregnation approach, ensures firm metal anchoring and results in stable and selective N2O production over 100 h on stream up to 79% N2O selectivity at full NH3 conversion. Raman, electron paramagnetic resonance, and in situ UV-vis spectroscopies reveal that chromium incorporation enhances the density of oxygen vacancies and the rate of their generation and healing. Accordingly, temporal analysis of products, kinetic studies, and atomistic simulations show lattice oxygen of ceria to directly participate in the reaction, establishing the cocatalytic role of the carrier. Coupled with the dynamic restructuring of chromium sites to stabilize intermediates of N2O formation, these factors enable catalytic performance on par with or exceeding benchmark systems. These findings demonstrate how nanoscale engineering can elevate a previously overlooked metal into a highly competitive catalyst for selective ammonia oxidation to N2O, paving the way toward industrial implementation.

SELECTION OF CITATIONS
SEARCH DETAIL
...