Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Hum Biol ; 49(7-8): 291-298, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36350847

ABSTRACT

BACKGROUND: Plasminogen activator inhibitor 1 (PAI-1) and resistin are associated with dysfunctional adipose tissue (AT)-related metabolic complications. The role of dietary eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids in this relationship is unknown. AIM: To investigate the association of EPA and DHA with PAI-1 and resistin, as well as the role of this association on the glucose metabolism of apparently healthy subjects. SUBJECTS AND METHODS: Thirty-six healthy individuals were included. Validated food frequency questionnaires were used to analyse dietary habits. Inflammatory and glucose metabolism markers were quantified. Subcutaneous AT samples were obtained, and adipocyte number, area, and macrophage content were assessed. RESULTS: In 36 subjects aged 56 ± 8 years and with a body mass index of 26 ± 4 kg/m2, logEPA, and logDHA showed significant association with logresistin and a marginal association with PAI-1. Adipocyte number, area, and lognumber of macrophages per adipocyte significantly correlated with PAI-1 but not with logresistin. Although logEPA and logDHA were independently associated with loginsulin, loginsulin resistance, and C-Peptide, the addition of logresistin, but not of PAI-1, into the multivariable model, abolished the associations. CONCLUSIONS: EPA and DHA could modulate glucose metabolism across AT functional states. Our data indicate that this association is independent of other metabolic risk factors.


Subject(s)
Fatty Acids, Omega-3 , Plasminogen Activator Inhibitor 1 , Humans , Plasminogen Activator Inhibitor 1/metabolism , Resistin/metabolism , Eicosapentaenoic Acid/metabolism , Eicosapentaenoic Acid/pharmacology , Self Report , Healthy Volunteers , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/pharmacology , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Adipose Tissue/metabolism , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL