Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Epilepsia Open ; 9(2): 665-678, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38321819

ABSTRACT

OBJECTIVE: The goal of this research was to evaluate the effect of DM type 2 (DM2) on SE severity, neurodegeneration, and brain oxidative stress (OS) secondary to seizures. METHODS: DM2 was induced in postnatal day (P) 3 male rat pups by injecting streptozocin (STZ) 100 mg/kg; control rats were injected with citrate buffer as vehicle. At P90, SE was induced by the lithium-pilocarpine administration and seizure latency, frequency, and severity were evaluated. Neurodegeneration was assessed 24 h after SE by Fluoro-Jade B (F-JB) staining, whereas OS was estimated by measuring lipid peroxidation and reactive oxygen species (ROS). RESULTS: DM2 rats showed an increase in latency to the first generalized seizure and SE onset, had a higher number and a longer duration of seizures, and displayed a larger neurodegeneration in the hippocampus (CA3, CA1, dentate gyrus, and hilus), the piriform cortex, the dorsomedial nucleus of the thalamus and the cortical amygdala. Our results also show that only SE, neither DM2 nor the combination of DM2 with SE, caused the increase in ROS and brain lipid peroxidation. SIGNIFICANCE: DM2 causes higher seizure severity and neurodegeneration but did not exacerbate SE-induced OS under these conditions. PLAIN LANGUAGE SUMMARY: Our research performed in animal models suggests that type 2 diabetes mellitus (DM2) may be a risk factor for causing higher seizure severity and seizure-induced neuron cell death. However, even when long-term seizures promote an imbalance between brain pro-oxidants and antioxidants, DM2 does not exacerbate that disproportion.


Subject(s)
Diabetes Mellitus, Type 2 , Status Epilepticus , Rats , Animals , Male , Diabetes Mellitus, Type 2/complications , Reactive Oxygen Species/adverse effects , Pilocarpine/adverse effects , Seizures , Status Epilepticus/chemically induced , Oxidative Stress
2.
Mol Neurobiol ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289456

ABSTRACT

Epilepsy is characterized by a sustained depolarization and repeated discharge of neurons, attributed to overstimulation of N-methyl-D-aspartate receptors (NMDAr). Herein, we propose that probenecid (PROB), an inhibitor of the activity of some ATP binding-cassette transporters (ABC-transporters) can modify NMDAr activity and expression in amygdaloid kindled model. Some studies have suggested that NMDAr expression could be regulated by inhibiting the activity of P-glycoprotein (MDR1) and drug resistance protein-1 (MRP1). Besides, PROB was found to interact with other proteins with proven activity in the kindling model, such as TRPV2 channels, OAT1, and Panx1. Administering PROB at two doses (100 and 300 mg/kg/d) for 5 d decreased after-discharge duration and Racine behavioral scores. It also reduced the expression of NR2B and the activity of total NOS and the expression of nNOS with respect to the kindling group. In a second protocol, voltage-clamp measurements of NMDA-evoked currents were performed in CA1 hippocampal cells dissociated from control and kindled rats. PROB produced a dose-dependent reduction in NMDA-evoked currents. In neurons from kindled rats, a residual NMDA-evoked current was registered with respect to control animals, while a reduction in NMDA-evoked currents was observed in the presence of 20 mM PROB. Finally, we evaluated the expression of MRP1 and MDR1 in order to establish a relationship between the reduction of kindling parameters, the inhibition of NMDA-type currents, and the expression of these transporters. Based on our results, we conclude that at the concentrations used, PROB inhibits currents evoked by NMDA in dissociated neurons of control and kindled rats. In the kindling model, at the tested doses, PROB decreases the after-discharge duration and Racine behavioral score in the kindling model. We propose a mechanism that could be dependent on the expression of ABC-type transporters.

3.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834679

ABSTRACT

Parkinson's disease (PD) is the most common α-synucleinopathy worldwide. The pathognomonic hallmark of PD is the misfolding and propagation of the α-synuclein (α-syn) protein, observed in post-mortem histopathology. It has been hypothesized that α-synucleinopathy triggers oxidative stress, mitochondrial dysfunction, neuroinflammation, and synaptic dysfunction, leading to neurodegeneration. To this date, there are no disease-modifying drugs that generate neuroprotection against these neuropathological events and especially against α-synucleinopathy. Growing evidence suggests that peroxisome proliferator-activated receptor (PPAR) agonists confer neuroprotective effects in PD, however, whether they also confer an anti-α-synucleinopathy effect is unknown. Here we analyze the reported therapeutic effects of PPARs, specifically the gamma isoform (PPARγ), in preclinical PD animal models and clinical trials for PD, and we suggest possible anti-α-synucleinopathy mechanisms acting downstream from these receptors. Elucidating the neuroprotective mechanisms of PPARs through preclinical models that mimic PD as closely as possible will facilitate the execution of better clinical trials for disease-modifying drugs in PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Synucleinopathies , Animals , Parkinson Disease/metabolism , Peroxisome Proliferator-Activated Receptors , Neuroprotective Agents/therapeutic use , Neuroprotection , Disease Models, Animal
4.
Metab Brain Dis ; 38(3): 767-782, 2023 03.
Article in English | MEDLINE | ID: mdl-36598703

ABSTRACT

The brain requires a large amount of energy. Its function can be altered when energy demand exceeds supply or during metabolic disturbances such as diabetes mellitus. Diabetes, a chronic disease with a high incidence worldwide, is characterized by high glucose levels (hyperglycemia); however, hypoglycemic states may also occur due to insulin treatment or poor control of the disease. These alterations in glucose levels affect the brain and could cause epileptic seizures and status epilepticus. In addition, it is known that oxidative stress states emerge as diabetes progresses, contributing to the development of diseases secondary to diabetes, including retinopathy, nephropathy, cardiovascular alterations, and alterations in the central nervous system, such as epileptic seizures. Seizures are a complex of transient signs and symptoms resulting from abnormal, simultaneous, and excessive activity of a population of neurons, and they can be both a cause and a consequence of oxidative stress. This review aims to outline studies linking diabetes mellitus and seizures to oxidative stress, a condition that may be relevant to the development of severe seizures in diabetes mellitus patients.


Subject(s)
Diabetes Mellitus , Epilepsy , Humans , Oxidative Stress , Seizures/complications , Glucose
5.
Mol Neurobiol ; 60(5): 2678-2690, 2023 May.
Article in English | MEDLINE | ID: mdl-36701109

ABSTRACT

Toll-like receptors (TLRs) are central players in innate immunity responses. They are expressed in glial cells and neurons, and their overactivation leads to the production of proinflammatory molecules, neuroinflammation, and neural damage associated with many neurodegenerative pathologies, such as Huntington's disease (HD). HD is an inherited disorder caused by a mutation in the gene coding for the protein Huntingtin (Htt). Expression of mutated Htt (mHtt) causes progressive neuronal degeneration characterized by striatal loss of GABAergic neurons, oxidative damage, neuroinflammatory processes, and impaired motor behavior. The main animal models to study HD are the intrastriatal injection of quinolinic acid (QA) and the transgenic B6CBA-Tg (HDexon1)61Gpb/1 J mice (R6/1). Those models mimic neuronal damage and systemic manifestations of HD. The objective of this work was to study the participation of TLR4 in the manifestations of neuronal damage and HD symptoms in the two mentioned models. For this purpose, C57BL6/J and TLR4-KO mice were administered with QA, and after that motor activity, and neuronal and oxidative damages were measured. R6/1 and TLR4-KO were mated to study the effect of low expression of TLR4 on the phenotype manifestation in R6/1 mice. We found that TLR4 is involved in motor activity, and neurological and oxidative damage induced by intrastriatal injection of QA, and the low expression of TLR4 causes a delay in the onset of phenotypic manifestations by the mHtt expression in R6/1 mice. Our results show that TLR4 is involved in both models of HD and focuses then as a therapeutic target for some deleterious reactions in HD.


Subject(s)
Huntington Disease , Mice , Animals , Huntington Disease/genetics , Mice, Transgenic , Toll-Like Receptor 4/metabolism , Neurons/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Huntingtin Protein/metabolism
6.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36232716

ABSTRACT

The α-synucleinopathies constitute a subset of neurodegenerative disorders, of which Parkinson's disease (PD) is the most common worldwide, characterized by the accumulation of misfolded α-synuclein in the cytoplasm of neurons, which spreads in a prion-like manner to anatomically interconnected brain areas. However, it is not clear how α-synucleinopathy triggers neurodegeneration. We recently developed a rat model through a single intranigral administration of the neurotoxic ß-sitosterol ß-D-glucoside (BSSG), which produces α-synucleinopathy. In this model, we aimed to evaluate the temporal pattern of levels in oxidative and nitrosative stress and mitochondrial complex I (CI) dysfunction and how these biochemical parameters are associated with neurodegeneration in different brain areas with α-synucleinopathy (Substantia nigra pars compacta, the striatum, in the hippocampus and the olfactory bulb, where α-syn aggregation spreads). Interestingly, an increase in oxidative stress and mitochondrial CI dysfunction accompanied neurodegeneration in those brain regions. Furthermore, in silico analysis suggests a high-affinity binding site for BSSG with peroxisome proliferator-activated receptors (PPAR) alpha (PPAR-α) and gamma (PPAR-γ). These findings will contribute to elucidating the pathophysiological mechanisms associated with α-synucleinopathies and lead to the identification of new early biomarkers and therapeutic targets.


Subject(s)
Brain , Electron Transport Complex I , Mitochondria , Oxidative Stress , Synucleinopathies , alpha-Synuclein , Animals , Brain/metabolism , Brain/physiopathology , Disease Models, Animal , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Nitrosative Stress , Peroxisome Proliferator-Activated Receptors/metabolism , Rats , Synucleinopathies/metabolism , Synucleinopathies/physiopathology , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
7.
J Neurochem ; 160(2): 256-270, 2022 01.
Article in English | MEDLINE | ID: mdl-34665461

ABSTRACT

Huntington´s disease (HD) is a pathological condition that can be studied in mice by the administration of quinolinic acid (QUIN), an agonist of the N-methyl-d-aspartate receptor (NMDAR) that induces NMDAR-mediated cytotoxicity and neuroinflammation. Mast cells (MCs) participate in numerous inflammatory processes through the release of important amounts of histamine (HA). In this study, we aimed to characterize the participation of MCs and HA in the establishment of neural and oxidative damage in the QUIN-induced model of HD. C57BL6/J mice (WT), MC-deficient c-KitW-sh/W-sh (Wsh) mice and Wsh mice reconstituted by intracerebroventricular (i.c.v.) injection of 5 × 105 bone marrow-derived mast cells (BMMCs), or i.c.v. administered with HA (5 µg) were used. All groups of animals were intrastriatally injected with 1 µL QUIN (30 nmol/µL) and 3 days later, apomorphine-induced circling behavior, striatal GABA levels and the number of Fluoro-Jade positive cells, as indicators of neuronal damage, were determined. Also, lipid peroxidation (LP) and reactive oxygen species production (ROS), as markers of oxidative damage, were analyzed. Wsh mice showed less QUIN-induced neuronal and oxidative damage than WT and Wsh-MC reconstituted animals. Histamine administration restored the QUIN-induced neuronal and oxidative damage in the non-reconstituted Wsh mice to levels equivalent or superior to those observed in WT mice. Our results demonstrate that MCs and HA participate in the neuronal and oxidative damages observed in mice subjected to the QUIN -induced model of Huntington's disease.


Subject(s)
Histamine/immunology , Huntington Disease/immunology , Huntington Disease/pathology , Mast Cells/immunology , Neurons/pathology , Animals , Disease Models, Animal , Female , Histamine/metabolism , Huntington Disease/chemically induced , Mast Cells/metabolism , Mice , Mice, Inbred C57BL , Quinolinic Acid/toxicity
8.
Neurosci Res ; 174: 36-45, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34453989

ABSTRACT

The recombinant carboxyl-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) exerts neuroprotective and neurorestorative effects on the dopaminergic system of animal models of Parkinson's disease (PD). The present study aimed to determine the effect of the Hc-TeTx fragment on the markers of oxidative stress and nitrosative stress generated by the acute toxicity of 1-methyl-4-phenylpyridinium (MPP+). For this purpose, the Hc-TeTx fragment was administered once a day in three 20 µg/kg consecutive injections into the grastrocnemius muscle of the rats, with an intra-striatal unilateral injection of 1 µL of MPP+ [10 µg/mL] then administered in order to cause a dopaminergic lesion. The results obtained show that the rats treated with Hc-TeTx plus MPP+ presented an increase in the expression of tyrosine hydroxylase (TH), a significantly greater decrease in the levels of the markers of oxidative stress, nitrosative stress, and neurodegeneration than that observed for the group injured with only MPP+. Moreover, it was observed that total superoxide dismutase (SOD) and copper/zinc SOD activity increased with the administration of Hc-TeTx. Finally, immunoreactivity levels were observed to decrease for the levels of 3-nitrotyrosine and the glial fibrillary acidic protein in the ipsilateral striatum of the rats treated with Hc-TeTx plus MPP+, in contrast with those lesioned with MPP+ alone. Our results demonstrate that the recombinant Hc-TeTx fragment may be a potent antioxidant and, therefore, could be suggested as a therapeutic tool against the dopaminergic neuronal impairment observed in the early stages of PD.


Subject(s)
Parkinson Disease , Tetanus Toxin , 1-Methyl-4-phenylpyridinium/toxicity , Animals , Nitrosative Stress , Oxidative Stress , Parkinson Disease/drug therapy , Peptide Fragments/metabolism , Rats , Tetanus Toxin/metabolism , Tetanus Toxin/toxicity
9.
Neurosci Biobehav Rev ; 126: 361-367, 2021 07.
Article in English | MEDLINE | ID: mdl-33819547

ABSTRACT

Lead (Pb) is a pollutant commonly found in the environment, despite the implementation of public health policies intended to remove it. Due to its chemical characteristics as a divalent ion, Pb interacts with cells, enzymes, and tissues, causing pathological, physical, and behavioral alterations. Recent biotechnological advances have helped us to understand the mechanisms underlying the damage caused by Pb in human populations and in experimental models, and new evidence on the epigenetic alterations caused by exposition to environmental Pb is available. It is known that Pb exposure impacts on behavior (causing aggressiveness, anxiety, and depression), leading to learning deficit and locomotor activity alterations, and its presence has been linked with the abnormal release of neurotransmitters and other biochemical changes involved in these disorders. Still, further reductionist studies are required to determine the effects of Pb exposure on DNA and protein expression and understand the processes underlying the diseases caused by Pb. This will also indicate possible therapeutic targets to offset the negative effects of the heavy metal. By elucidating the epigenetic changes involved, it would be possible to manipulate them and propose novel therapeutic approaches in this area. This review is aimed to provide an overview of studies that link Pb exposure to behavioral changes, as well as biochemical and epigenetic alterations at a neurotransmitter level, considering the importance of this metal in behavior abnormalities.


Subject(s)
Epigenesis, Genetic , Lead , Anxiety , Gene Expression , Humans , Lead/toxicity , Protein Processing, Post-Translational
10.
Behav Brain Res ; 408: 113230, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33684424

ABSTRACT

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an abnormal CAG repeat expansion in the huntingtin gene coding for a protein with an elongated polyglutamine sequence. HD patients present choreiform movements, which are caused by the loss of neurons in the striatum and cerebral cortex. Previous reports indicate that the absence of the aryl hydrocarbon receptor (AhR) protects mice from excitotoxic insults and increases the transcription of neurotrophic factors. Based on these data, we evaluated the effects of the lack of the AhR on a mice model of HD, generating a double transgenic mouse, expressing human mutated huntingtin (R6/1 mice) and knockout for the AhR. Our results show that the body weight of 30-week-old double transgenic mice is similar to that of R6/1 mice; however, feet clasping, an indicative of neuronal damage in the R6/1 animals, was not observed. In addition, motor coordination and ambulatory behavior in double transgenic mice did not deteriorate over time as occur in the R6/1 mice. Moreover, the anxiety behavior of double transgenic mice was similar to wild type mice. Interestingly, astrogliosis is also reduced in the double transgenic mice. The present data demonstrate that the complete loss of the AhR reduces the motor and behavioral deterioration observed in R6/1 mice, suggesting that the pharmacological modulation of the AhR could be a therapeutic target in HD.


Subject(s)
Behavior, Animal/physiology , Gliosis/physiopathology , Huntingtin Protein/genetics , Huntington Disease/metabolism , Huntington Disease/physiopathology , Motor Activity/physiology , Receptors, Aryl Hydrocarbon/physiology , Animals , Disease Models, Animal , Huntington Disease/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phenotype
11.
Nutr Neurosci ; 24(1): 1-12, 2021 Jan.
Article in English | MEDLINE | ID: mdl-30822260

ABSTRACT

Background: Essential fatty acids (EFAs) and non-essential fatty acids (nEFAs) exert experimental and clinical neuroprotection in neurodegenerative diseases. The main EFAs, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), nEFAs, and oleic acid (OA) contained in olive and fish oils are inserted into the cell membranes, but the exact mechanism through which they exert neuroprotection is still unknown. Objectives and Methods: In this study, we assessed the fatty acids content and membrane fluidity in striatal rat synaptosomes after fatty acid-rich diets (olive- or a fish-oil diet, 15% w/w). Then, we evaluated the effect of enriching striatum synaptosomes with fatty acids on the oxidative damage produced by the prooxidants ferrous sulfate (FeSO4) or quinolinic acid (QUIN). Results and Discussion: Lipid profile analysis in striatal synaptosomes showed that EPA content increased in the fish oil group in comparison with control and olive groups. Furthermore, we found that synaptosomes enriched with fatty acids and incubated with QUIN or FeSO4 showed a significant oxidative damage reduction. Results suggest that EFAs, particularly EPA, improve membrane fluidity and confer antioxidant effect.


Subject(s)
Cell Membrane/metabolism , Corpus Striatum/metabolism , Fatty Acids/metabolism , Oxidative Stress , Synaptosomes/metabolism , Animals , Cell Membrane/ultrastructure , Corpus Striatum/drug effects , Corpus Striatum/ultrastructure , Fatty Acids/administration & dosage , Fish Oils/administration & dosage , Male , Plant Oils/administration & dosage , Rats, Wistar , Reactive Oxygen Species/metabolism , Synaptosomes/ultrastructure
12.
Mov Disord ; 35(7): 1113-1127, 2020 07.
Article in English | MEDLINE | ID: mdl-32410324

ABSTRACT

Huntington's disease is an autosomal-dominant, neurodegenerative disorder caused by a CAG repeat expansion in exon-1 of the huntingtin gene. Alterations in cholesterol metabolism and distribution have been reported in Huntington's disease, including abnormal interactions between mutant huntingtin and sterol regulatory element-binding proteins, decreased levels of apolipoprotein E/cholesterol/low-density lipoprotein receptor complexes, and alterations in the synthesis of ATP-binding cassette transporter A1. Plasma levels of 24S-hydroxycholestrol, a key intermediary in cholesterol metabolism and a possible marker in neurodegenerative diseases, decreased proportionally to the degree of caudate nucleus atrophy. The interaction of mutant huntingtin with sterol regulatory element-binding proteins is of particular interest given that sterol regulatory element-binding proteins play a dual role: They take part in lipid and cholesterol metabolism, but also in the inflammatory response that induces immune cell migration as well as toxic effects, particularly in astrocytes. This work summarizes current evidence on the metabolic and immune implications of sterol regulatory element-binding protein dysregulation in Huntington's disease, highlighting the potential use of drugs that modulate these alterations. © 2020 International Parkinson and Movement Disorder Society.


Subject(s)
Brain/metabolism , Cholesterol/metabolism , Huntington Disease/metabolism , ATP Binding Cassette Transporter 1/metabolism , Humans , Huntington Disease/genetics , Lipid Metabolism
13.
J Neuroinflammation ; 17(1): 95, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32220257

ABSTRACT

BACKGROUND: Huntington's disease (HD) is caused by the expression of a mutated variant of Huntingtin (mHtt), which results in the complex pathology characterized by a defective function of the nervous system and altered inflammatory responses. While the neuronal effects of mHtt expression have been extensively studied, its effects on the physiology of immune cells have not been fully described. Mast cells (MCs) are unique tissue-resident immune cells whose activation has been linked to protective responses against parasites and bacteria, but also to deleterious inflammatory allergic reactions and, recently, to neurodegenerative diseases. METHODS: Bone marrow-derived mast cells (BMMCs) were obtained from wild-type (WT-) and mHtt-expressing (R6/1) mice to evaluate the main activation parameters triggered by the high-affinity IgE receptor (FcεRI) and the Toll-like receptor (TLR) 4. Degranulation was assessed by measuring the secretion of ß-hexosaminidase, MAP kinase activation was detected by Western blot, and cytokine production was determined by RT-PCR and ELISA. TLR-4 receptor and Htt vesicular trafficking was analyzed by confocal microscopy. In vivo, MC-deficient mice (c-KitWsh/Wsh) were intraperitonally reconstituted with WT or R6/1 BMMCs and the TLR4-induced production of the tumor necrosis factor (TNF) was determined by ELISA. A survival curve of mice treated with a sub-lethal dose of bacterial lipopolysaccharide (LPS) was constructed. RESULTS: R6/1 BMMCs showed normal ß-hexosaminidase release levels in response to FcεRI, but lower cytokine production upon LPS stimulus. Impaired TLR4-induced TNF production was associated to the lack of intracellular dynamin-dependent TLR-4 receptor trafficking to perinuclear regions in BMMCs, a diminished ERK1/2 and ELK-1 phosphorylation, and a decrease in c-fos and TNF mRNA accumulation. R6/1 BMMCs also failed to produce TLR4-induced anti-inflammatory cytokines (like IL-10 and TGF-ß). The detected defects were also observed in vivo, in a MCs-dependent model of endotoxemia. R6/1 and c-KitWsh/Wsh mice reconstituted with R6/1 BMMCs showed a decreased TLR4-induced TNF production and lower survival rates to LPS challenge than WT mice. CONCLUSIONS: Our data show that mHtt expression causes an impaired production of pro- and anti-inflammatory mediators triggered by TLR-4 receptor in MCs in vitro and in vivo, which could contribute to the aberrant immunophenotype observed in HD.


Subject(s)
Cytokines/metabolism , Huntingtin Protein/genetics , Mast Cells/metabolism , Protein Transport/genetics , Toll-Like Receptor 4/metabolism , Animals , Endotoxemia/metabolism , Inflammation/metabolism , Lipopolysaccharides , Mice , Mice, Transgenic , Receptors, IgE/metabolism , Signal Transduction/physiology
14.
Antioxidants (Basel) ; 8(5)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052185

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia and the aggregation of the amyloid beta peptide (Aß). Aß25-35 is the most neurotoxic sequence, whose mechanism is associated with the neuronal death in the Cornu Ammonis 1 (CA1) region of the hippocampus (Hp) and cognitive damage. Likewise, there are mechanisms of neuronal survival regulated by heat shock proteins (HSPs). Studies indicate that pharmacological treatment with flavonoids reduces the prevalence of AD, particularly epicatechin (EC), which shows better antioxidant activity. The aim of this work was to evaluate the effect of EC on neurotoxicity that causes Aß25-35 at the level of spatial memory as well as the relationship with immunoreactivity of HSPs in the CA1 region of the Hp of rats. Our results show that EC treatment reduces the deterioration of spatial memory induced by the Aß25-35, in addition to reducing oxidative stress and inflammation in the Hp of the animals treated with EC + Aß25-35. Likewise, the immunoreactivity to HSP-60, -70, and -90 is lower in the EC + Aß25-35 group compared to the Aß25-35 group, which coincides with a decrease of dead neurons in the CA1 region of the Hp. Our results suggest that EC reduces the neurotoxicity induced by Aß25-35, as well as the HSP-60, -70, and -90 immunoreactivity and neuronal death in the CA1 region of the Hp of rats injected with Aß25-35, which favors an improvement in the function of spatial memory.

15.
Behav Brain Res ; 366: 108-117, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30898683

ABSTRACT

Nitric oxide (NO) plays a leading role in learning and memory processes. Previously, we showed its ability to modify the deleterious effect of immunotoxin 192 IgG-saporin (192-IgG-SAP) in the cholinergic system. The aim of this study was to analyze the potential of a NO donor (molsidomine, MOLS) to prevent the recognition memory deficits resulting from the septal cholinergic denervation by 192 IgG-SAP in rats. Quantification of neuronal and endothelial nitric oxide synthase (nNOS and eNOS, respectively) expression was evaluated in striatum, prefrontal cortex, and hippocampus. In addition, a choline acetyltransferase immunohistochemical analysis was performed in medial septum and assessed the effect of MOLS treatment on the spatial working memory of rats through a recognition memory test. Results showed that 192-IgG-SAP reduced the immunoreactivity of cholinergic septal neurons (41%), compared with PBS-receiving control rats (p < 0.05). Treatment with MOLS alone failed to antagonize the septal neuron population loss but prevented the progressive abnormal morphological changes of neurons. Those animals exposed to 192-IgG-SAP immunotoxin exhibited a reduction of cortical nNOS expression against the control group, whereas expression was enhanced in the 192-IgG-SAP + MOLS group. The most relevant finding was the recovering of the discrimination index exhibited by the 192-IgG-SAP + MOLS group. When compared with the rats exposed to the 192-IgG-SAP immunotoxin, they reached values similar to those observed in the PBS group. Our results show that although MOLS failed to block the cholinergic neurons loss induced by 192-IgG-SAP, it avoided the neuronal damage progression.


Subject(s)
Memory Disorders/drug therapy , Molsidomine/pharmacology , Recognition, Psychology/drug effects , Acetylcholine/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Choline O-Acetyltransferase/metabolism , Cholinergic Neurons/drug effects , Cognition/drug effects , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Hippocampus/metabolism , Male , Maze Learning/drug effects , Memory/drug effects , Memory, Short-Term/physiology , Molsidomine/metabolism , Nitric Oxide Donors/metabolism , Nitric Oxide Donors/pharmacology , Rats , Rats, Wistar , Saporins/pharmacology , Visual Perception/drug effects
16.
Neurotox Res ; 35(3): 699-710, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30607904

ABSTRACT

Reports indicate that striatal dopaminergic damage induced by 6-hydoxydopamine (6-OHDA) can be blocked by C-terminal domain of tetanus toxin (Hc-TeTx), suggesting possible therapeutic potential of Hc-TeTx in Parkinson's disease (PD). Pramipexole (PPX), a D2/D3 dopaminergic agonist, is currently used in PD treatment. The purpose of this study was to gain some understanding of the actions of each drug, including potential antioxidant and anti-inflammatory effects and importantly, to determine whether the combination of the two drugs would be superior to each alone. Adult male Wistar rats were administered 6-OHDA into the dorso-lateral striatum, and the effects of Hc-TeTx fragment (20 µg/kg i.m. every 24 h) for 3 days; PPX (1 mg/kg p.o., every 12 h) for 30 days and their combination on various motor and neurochemical parameters were evaluated. Behavioral tests were carried out at 15 and 30 days post-treatments. At day 31, the animals were sacrificed and the levels of tyrosine hydroxylase (TH), reflecting dopaminergic activity in both striatum and substantia nigra, were evaluated. In addition, indices of astrogliosis, microgliosis, as well as oxidative stress in the striatum were determined. Both Hc-TeTx and PPX ameliorated the motor and neurochemical deficits induced by 6-OHDA lesion; however, the combination of the two drugs was not superior to each alone. Hence, at concentrations used in this study, no significant advantage in combining Hc-TeTx with PPX was noted. Although the results suggest similar neurochemical effects of the two compounds, further evaluation of different concentrations of Hc-TeTx and PPX as potential intervention in PD is warranted.


Subject(s)
Antiparkinson Agents/pharmacology , Parkinsonian Disorders/drug therapy , Peptide Fragments/pharmacology , Pramipexole/pharmacology , Tetanus Toxin/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Drug Therapy, Combination , Gliosis/drug therapy , Gliosis/metabolism , Gliosis/pathology , Male , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Motor Activity/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Oxidopamine , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Random Allocation , Rats, Wistar , Time Factors
17.
ACS Chem Neurosci ; 10(1): 323-336, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30141907

ABSTRACT

Worldwide, every year there is an increase in the number of people exposed to inorganic arsenic (iAs) via drinking water. Human populations present impaired cognitive function as a result of prenatal and childhood iAs exposure, while studies in animal models demonstrate neurobehavioral deficits accompanied by neurotransmitter, protein, and enzyme alterations. Similar impairments have been observed in close association with Alzheimer's disease (AD). In order to determine whether iAs promotes the pathophysiological progress of AD, we used the 3xTgAD mouse model. Mice were exposed to iAs in drinking water from gestation until 6 months (As-3xTgAD group) and compared with control animals without arsenic (3xTgAD group). We investigated the behavior phenotype on a test battery (circadian rhythm, locomotor behavior, Morris water maze, and contextual fear conditioning). Adenosine triphosphate (ATP), reactive oxygen species, lipid peroxidation, and respiration rates of mitochondria were evaluated, antioxidant components were detected by immunoblots, and immunohistochemical studies were performed to reveal AD markers. As-3xTgAD displayed alterations in their circadian rhythm and exhibited longer freezing time and escape latencies compared to the control group. The bioenergetic profile revealed decreased ATP levels accompanied by the decline of complex I, and an oxidant state in the hippocampus. On the other hand, the cortex showed no changes of oxidant stress and complex I; however, the antioxidant response was increased. Higher immunopositivity to amyloid isoforms and to phosphorylated tau was observed in frontal cortex and hippocampus of exposed animals. In conclusion, mitochondrial dysfunction may be one of the triggering factors through which chronic iAs exposure exacerbates brain AD-like pathology.


Subject(s)
Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Arsenic/toxicity , Energy Metabolism/physiology , Hippocampus/metabolism , Maze Learning/physiology , Alzheimer Disease/genetics , Amyloid beta-Peptides/genetics , Animals , Disease Models, Animal , Energy Metabolism/drug effects , Female , Hippocampus/drug effects , Hippocampus/pathology , Humans , Male , Maze Learning/drug effects , Mice , Mice, Transgenic , Presenilin-1/genetics , tau Proteins/genetics
18.
Eur J Pharmacol ; 845: 32-39, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30582909

ABSTRACT

Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid that has shown an antinociceptive effect in multiple pain models, such as inflammatory and neuropathic pain by chronic constriction injury in rats; however, its mechanism of action is still not well-understood. Reports suggest that DHA activates opioid signaling, but there is no information on this from a model of neuropathic pain. As a result, the aims of this study were (1) to determine the antihyperalgesic and antiallodynic effect of peripheral DHA administration, and (2) to evaluate the participation of the opioid receptors in the antihyperalgesic effect of DHA on streptozotocin-induced neuropathic pain in the rat. Female Wistar rats were injected with streptozotocin (50 mg/kg, i.p.) to induce hyperglycemia. The formalin, Hargreaves, and von Frey filaments tests were used to assess the nociceptive activity. Intraplantar administration of DHA (100-1000 µg/paw) or gabapentin (562-1778 µg/paw) decreased formalin-evoked hyperalgesia in diabetic rats, in a dose-dependent manner. Furthermore, DHA (562 µg/paw) and gabapentin (1000 µg/paw) reduced thermal hyperalgesia and allodynia. Local peripheral administration of naloxone (non-selective opioid receptor antagonist; 100 µg/paw), naltrindole (selective δ receptor antagonist; 1 µg/paw), and CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, µ receptor antagonist; 20 µg/paw) prevented formalin-evoked hyperalgesia in diabetic rats but not by GNTI (guanidinonaltrindole, κ receptor antagonist;1 µg/paw). It is suggested that peripheral DHA shows an antihyperalgesic effect in neuropathic pain in the rat. Furthermore, δ and µ receptors are involved in the antihyperalgesic peripheral effect of DHA in diabetic rats.


Subject(s)
Analgesics/administration & dosage , Diabetic Neuropathies/drug therapy , Docosahexaenoic Acids/administration & dosage , Analgesics/pharmacology , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Animals , Diabetic Neuropathies/chemically induced , Docosahexaenoic Acids/pharmacology , Dose-Response Relationship, Drug , Gabapentin/administration & dosage , Gabapentin/pharmacology , Naloxone/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Rats , Rats, Wistar , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, sigma/antagonists & inhibitors , Streptozocin
19.
Front Behav Neurosci ; 12: 202, 2018.
Article in English | MEDLINE | ID: mdl-30233338

ABSTRACT

The effects caused by exposure to lead (Pb) are still considered as a relevant health risk despite public policies aimed to restricting the use of this element. The toxicity limit in the blood (10 µg/dL, established by the Center for Disease Control and Prevention) has been insufficient to prevent adverse effects and even lower values have been related to neurobehavioral dysfunctions in children. Currently, there is not a safe limit of exposure to Pb. A large body of evidence points to environmental pollutant exposure as the cause of predisposition to violent behavior, among others. Considering the evidence by our group and others, we propose that Pb exposure induces alterations in the brain vasculature, specifically in nitric oxide synthases (NOS), affecting in turn the serotonergic system and leading to heightened aggressive behavior in the exposed individuals. This review article describes the consequences of Pb exposure on the nitrergic and serotonergic systems as well as its relationship with aggressive behavior. In addition, it summarizes the available therapy to prevent damage in gestation and among infants.

SELECTION OF CITATIONS
SEARCH DETAIL
...