Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 180(24): 3254-3270, 2023 12.
Article in English | MEDLINE | ID: mdl-37522273

ABSTRACT

BACKGROUND AND PURPOSE: Guanylyl cyclase-A (GC-A), activated by endogenous atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), plays an important role in the regulation of cardiovascular and renal homeostasis and is an attractive drug target. Even though small molecule modulators allow oral administration and longer half-life, drug targeting of GC-A has so far been limited to peptides. Thus, in this study we aimed to develop small molecular activators of GC-A. EXPERIMENTAL APPROACH: Hits were identified through high-throughput screening and optimized by in silico design. Cyclic GMP was measured in QBIHEK293A cells expressing GC-A, GC-B or chimerae of the two receptors using AlphaScreen technology. Binding assays were performed in membrane preparations or whole cells using 125 I-ANP. Vasorelaxation was measured in aortic rings isolated from Wistar rats. KEY RESULTS: We have identified small molecular allosteric enhancers of GC-A, which enhanced ANP or BNP effects in cellular systems and ANP-induced vasorelaxation in rat aortic rings. The mechanism of action appears novel and not mediated through previously described allosteric binding sites. In addition, the selectivity and activity depend on a single amino acid residue that differs between the two similar receptors GC-A and GC-B. CONCLUSION AND IMPLICATIONS: We describe a novel allosteric binding site on GC-A, which can be targeted by small molecules to enhance ANP and BNP effects. These compounds will be valuable tools in further development and proof-of-concept of GC-A enhancement for the potential use in cardiovascular therapy.


Subject(s)
Atrial Natriuretic Factor , Guanylate Cyclase , Rats , Animals , Atrial Natriuretic Factor/pharmacology , Atrial Natriuretic Factor/metabolism , Guanylate Cyclase/metabolism , Rats, Wistar , Receptors, Atrial Natriuretic Factor/metabolism , Natriuretic Peptide, Brain/metabolism , Natriuretic Peptide, Brain/pharmacology , Cyclic GMP/metabolism
2.
Front Mol Neurosci ; 15: 991112, 2022.
Article in English | MEDLINE | ID: mdl-36267701

ABSTRACT

C-type natriuretic peptide (CNP) is highly expressed in the central nervous system (CNS) and key to neuronal development; however, a broader role for CNP in the CNS remains unclear. To address this deficit, we investigated behavioral, sensory and motor abnormalities and blood-brain barrier (BBB) integrity in a unique mouse model with inducible, global deletion of CNP (gbCNP-/-). gbCNP-/- mice and wild-type littermates at 12 (young adult) and 65 (aged) weeks of age were investigated for changes in gait and motor coordination (CatWalk™ and rotarod tests), anxiety-like behavior (open field and elevated zero maze tests), and motor and sensory function (modified neurological severity score [mNSS] and primary SHIRPA screen). Vascular permeability was assessed in vivo (Miles assay) with complementary in vitro studies conducted in primary murine brain endothelial cells. Young adult gbCNP-/- mice had normal gait but reduced motor coordination, increased locomotor activity in the open field and elevated zero maze, and had a higher mNSS score. Aged gbCNP-/- animals developed recurrent spontaneous seizures and had impaired gait and wide-ranging motor and sensory dysfunction. Young adult and aged gbCNP-/- mice exhibited increased BBB permeability, which was partially restored in vitro by CNP administration. Cultured brain endothelial cells from gbCNP-/- mice had an abnormal ZO-1 protein distribution. These data suggest that lack of CNP in the CNS impairs tight junction protein arrangement and increases BBB permeability, which is associated with changes in locomotor activity, motor coordination and late-onset seizures.

3.
J Med Chem ; 65(7): 5495-5513, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35333039

ABSTRACT

C-type natriuretic peptide (CNP) is involved in the regulation of vascular homeostasis, which is at least partly mediated through agonism of natriuretic peptide receptor C (NPR-C), and loss of this signaling has been associated with vascular dysfunction. As such, NPR-C is a novel therapeutic target to treat cardiovascular diseases. A series of novel small molecules have been designed and synthesized, and their structure-activity relationships were evaluated by a surface plasmon resonance binding assay. The biological activity of hit compounds was confirmed through organ bath assays measuring vascular relaxation and inhibition of cAMP production, which was shown to be linked to its NPR-C activity. Lead compound 1 was identified as a potent agonist (EC50 ∼ 1 µM) with promising in vivo pharmacokinetic properties.


Subject(s)
Natriuretic Peptide, C-Type , Signal Transduction , Homeostasis , Natriuretic Peptide, C-Type/metabolism , Natriuretic Peptide, C-Type/pharmacology
4.
Proc Natl Acad Sci U S A ; 119(13): e2116470119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35333648

ABSTRACT

Thermogenesis and adipogenesis are tightly regulated mechanisms that maintain lipid homeostasis and energy balance; dysfunction of these critical processes underpins obesity and contributes to cardiometabolic disease. C-type natriuretic peptide (CNP) fulfills a multimodal protective role in the cardiovascular system governing local blood flow, angiogenesis, cardiac function, and immune cell reactivity. Herein, we investigated a parallel, preservative function for CNP in coordinating metabolic homeostasis. Global inducible CNP knockout mice exhibited reduced body weight, higher temperature, lower adiposity, and greater energy expenditure in vivo. This thermogenic phenotype was associated with increased expression of uncoupling protein-1 and preferential lipid utilization by mitochondria, a switch corroborated by a corresponding diminution of insulin secretion and glucose clearance. Complementary studies in isolated murine and human adipocytes revealed that CNP exerts these metabolic regulatory actions by inhibiting sympathetic thermogenic programming via Gi-coupled natriuretic peptide receptor (NPR)-C and reducing peroxisome proliferator-activated receptor-γ coactivator-1α expression, while concomitantly driving adipogenesis via NPR-B/protein kinase-G. Finally, we identified an association between CNP/NPR-C expression and obesity in patient samples. These findings establish a pivotal physiological role for CNP as a metabolic switch to balance energy homeostasis. Pharmacological targeting of these receptors may offer therapeutic utility in the metabolic syndrome and related cardiovascular disorders.


Subject(s)
Homeostasis , Natriuretic Peptide, C-Type , Thermogenesis , Animals , Atrial Natriuretic Factor , Cardiovascular Diseases/metabolism , Metabolic Diseases/metabolism , Mice , Mice, Knockout , Natriuretic Peptide, C-Type/genetics , Natriuretic Peptide, C-Type/physiology , Receptors, Atrial Natriuretic Factor/metabolism
5.
Antioxidants (Basel) ; 11(1)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35052673

ABSTRACT

S-Nitrosothiol (RS-NO) formation in proteins and peptides have been implicated as factors in the etiology of many diseases and as possible regulators of thiol protein function. They have also been proposed as possible storage forms of nitric oxide (NO). However, despite their proposed functions/roles, there appears to be little consensus regarding the physiological mechanisms of RS-NO formation and degradation. Hydropersulfides (RSSH) have recently been discovered as endogenously generated species with unique reactivity. One important reaction of RSSH is with RS-NO, which leads to the degradation of RS-NO as well as the release of NO. Thus, it can be speculated that RSSH can be a factor in the regulation of steady-state RS-NO levels, and therefore may be important in RS-NO (patho)physiology. Moreover, RSSH-mediated NO release from RS-NO may be a possible mechanism allowing RS-NO to serve as a storage form of NO.

6.
Br J Pharmacol ; 179(11): 2443-2459, 2022 06.
Article in English | MEDLINE | ID: mdl-34131904

ABSTRACT

BACKGROUND AND PURPOSE: cGMP underpins the bioactivity of NO and natriuretic peptides and is key to cardiovascular homeostasis. cGMP-driven responses are terminated primarily by PDEs, but cellular efflux via multidrug resistance proteins (MRPs) might contribute. Herein, the effect of pharmacological blockade of MRPs on cGMP signalling in the heart and vasculature was investigated in vitro and in vivo. EXPERIMENTAL APPROACH: Proliferation of human coronary artery smooth muscle cells (hCASMCs), vasorelaxation of murine aorta and reductions in mean arterial BP (MABP) in response to NO donors or natriuretic peptides were determined in the absence and presence of the MRP inhibitor MK571. The ability of MRP inhibition to reverse morphological and contractile deficits in a murine model of pressure overload-induced heart failure was also explored. KEY RESULTS: MK571 attenuated hCASMC growth and enhanced the anti-proliferative effects of NO and atrial natriuretic peptide (ANP). MRP blockade caused concentration-dependent relaxations of murine aorta and augmented responses to ANP (and to a lesser extent NO). MK571 did not decrease MABP per se but enhanced the hypotensive actions of ANP and improved structural and functional indices of disease severity in experimental heart failure. These beneficial actions of MRP inhibition were associated with a greater intracellular:extracellular cGMP ratio in vitro and in vivo. CONCLUSIONS AND IMPLICATIONS: MRP blockade promotes the cardiovascular functions of natriuretic peptides in vitro and in vivo, with more modest effects on NO. MRP inhibition may have therapeutic utility in cardiovascular diseases triggered by dysfunctional cGMP signalling, particularly those associated with altered natriuretic peptide bioactivity. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Subject(s)
Atrial Natriuretic Factor , Heart Failure , ATP Binding Cassette Transporter, Subfamily B , Animals , Atrial Natriuretic Factor/metabolism , Atrial Natriuretic Factor/pharmacology , Cyclic GMP/metabolism , Heart Failure/drug therapy , Humans , Mice , Natriuretic Peptides/metabolism , Vasodilator Agents
7.
J Nutr Biochem ; 48: 51-61, 2017 10.
Article in English | MEDLINE | ID: mdl-28759787

ABSTRACT

The aim of the study was to characterize the vascular effects of rice bran enzymatic extract (RBEE). ApoE-/- mice were fed a high-fat/cholesterol diet (HFD) or HFD supplemented with 5% RBEE for 21 weeks. RBEE prevented development of atherosclerotic plaques and oxidative stress in mouse aorta as well as the down-regulation of markers of mitochondrial biogenesis. Analysis of the bioactive components identified ferulic acid (FA) as responsible component. In healthy human volunteers, FA intake reduced NADPH oxidase activity, superoxide release, apoptosis and necrosis in peripheral blood mononuclear cells. Differentiation and proliferation of endothelial progenitor cells were improved. In summary, the study identifies FA as a major active component of rice bran, which improves expression of mitochondrial biogenesis and dynamics markers and reduces oxidative stress in a mouse model of vascular damage as well as in endothelial cells and human mononuclear cells.


Subject(s)
Coumaric Acids/pharmacology , Mitochondria/drug effects , Oryza/chemistry , Plaque, Atherosclerotic/prevention & control , Animals , Aorta/drug effects , Apolipoproteins E/genetics , Biological Availability , Cattle , Coumaric Acids/pharmacokinetics , Diet, High-Fat/adverse effects , Endothelium, Vascular/cytology , Humans , Kidney/drug effects , Kidney/metabolism , Leukocytes, Mononuclear/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Mitochondria/metabolism , Organelle Biogenesis
8.
Food Funct ; 8(6): 2165-2174, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28524914

ABSTRACT

Rice bran is an exceptional source of such antioxidant molecules as γ-oryzanol and ferulic acid, but their bioavailability and metabolism within this matrix remain unknown. The aims of this work were to describe the oral bioavailability and metabolic pathways of the ferulic acid-derived phenolic compounds contained in a rice bran enzymatic extract (RBEE), and to determine its effect on NADPH oxidase activity. Wistar rats were administered with RBEE and sacrificed at different times over a period of 24 h to obtain plasma. An additional group was used for collection of urine and faeces over a period of 48 h. The phenolic metabolites were determined by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS), and plasma pharmacokinetic parameters were calculated. In parallel, aortic rings were incubated in the plasma of rats sacrificed 30 min after RBEE gavage, or in the presence of RBEE, ferulic acid or γ-oryzanol. Endothelin-1-induced superoxide production was recorded by lucigenin-enhanced luminescence. Twenty-five ferulic acid metabolites showing biphasic behaviour were found in the plasma, most of which were found in the urine as well, while in the faeces, colonic metabolism led to simpler phenolic compounds. Superoxide production was abrogated by phenolic compound-enriched plasma and by RBEE and ferulic acid, thus showing the biological potential of RBEE as a nutraceutical ingredient.


Subject(s)
Coumaric Acids/metabolism , Oryza/metabolism , Phenols/metabolism , Plant Extracts/metabolism , Superoxides/metabolism , Animals , Antioxidants/chemistry , Antioxidants/metabolism , Biological Availability , Coumaric Acids/chemistry , Feces/chemistry , Kinetics , Male , Phenols/chemistry , Plant Extracts/chemistry , Rats , Rats, Wistar , Superoxides/chemistry , Tandem Mass Spectrometry
9.
Nutrition ; 37: 22-29, 2017 May.
Article in English | MEDLINE | ID: mdl-28359358

ABSTRACT

OBJECTIVE: Rice bran is a by-product of rice milling and is rich in bioactive molecules such as γ-oryzanol, phytosterols, and tocotrienols. The rice bran enzymatic extract (RBEE) previously showed vessel remodeling prevention and lipid-lowering, antioxidant, anti-inflammatory, and antiapoptotic activities. The aim of this study was to identify RBEE hypolipidemic mechanisms and to study the effects of RBEE on the progression of atherosclerosis disease and linked vascular dysfunction and liver steatosis in apolipoprotein E-knockout (ApoE-/-) mice fed low- or high-fat (LFD, HFD, respectively) and cholesterol diets. METHODS: ApoE-/- mice were fed LFD (13% kcal) or HFD (42% kcal) supplemented or not supplemented with 1 or 5% RBEE (w/w) for 23 wk. Then, serum, aorta, liver, and feces were collected and flash frozen for further analysis. RESULTS: RBEE supplementation of HFD improved serum values by augmenting high-density lipoprotein cholesterol and preventing total cholesterol and aspartate aminotransferase increase. 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity was attenuated (1 and 5% RBEE) and cholesterol excretion increased (5% RBEE). Diet supplementation with 5% RBEE reduced plaque development regardless of the diet. In HFD-fed mice, both doses of RBEE reduced lipid deposition and macrophage infiltration in the aortic sinus and downregulated intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression. None of these effects was observed in mice fed LFD. Liver steatosis was reduced by RBEE supplementation of LFD (1% RBEE) and HFD (1 and 5% RBEE) and nuclear peroxisome proliferator-activated receptor-α expression upregulated in the HDF 5% RBEE group. CONCLUSION: Regular consumption of RBEE-supplemented HFD reduced plaque development and liver steatosis by decreasing inflammation and hyperlipidemia through an HMG-CoA reductase activity and lipid excretion-related mechanism.


Subject(s)
Diet, High-Fat , Dietary Fiber/pharmacology , Fatty Liver/drug therapy , Plant Extracts/pharmacology , Plaque, Atherosclerotic/drug therapy , Acyl Coenzyme A/blood , Animals , Antioxidants/administration & dosage , Aspartate Aminotransferases/blood , Cholesterol, Dietary/administration & dosage , Dietary Supplements , Dose-Response Relationship, Drug , Fatty Liver/blood , Inflammation/blood , Inflammation/drug therapy , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , PPAR alpha/genetics , PPAR alpha/metabolism , Phenylpropionates/administration & dosage , Phytosterols/administration & dosage , Plaque, Atherosclerotic/blood , Tocotrienols/administration & dosage , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
10.
Atherosclerosis ; 250: 15-22, 2016 07.
Article in English | MEDLINE | ID: mdl-27175607

ABSTRACT

BACKGROUND AND AIMS: Small mesenteric artery resistance and functionality are key factors for the maintenance of blood homeostasis. We attained to evaluate the effects of a rice bran enzymatic extract (RBEE) on structural, mechanic and myogenic alterations and endothelial dysfunction secondary to atherosclerosis disease. METHODS: Seven week-old ApoE(-/-) mice were fed on standard (ST) or high fat (HF) diets supplemented or not with 1 or 5% RBEE (w/w) for 23 weeks. Wild-type C57BL/6J mice fed on ST diet served as controls. Small mesenteric arteries were mounted in a pressure myograph in order to evaluate structural, mechanical and myogenic properties. Vascular reactivity was assessed in the presence of different combinations of inhibitors: l-NAME, indometacin, apamin and charybdotoxin. RESULTS: ApoE(-/-) mice fed on ST and HF diets showed different structural and mechanical alterations, alleviated by RBEE supplementation of ST and HF diets. C57BL/6J was characterized by increased expression of IKCa (199.3%, p = 0.023) and SKCa (133.2%, p = 0.026), resulting in higher EDHF participation (p = 0.0001). However, NO release was more relevant to ApoE(-/-) mice vasodilatation. HF diet reduced the amount of NO released due to 2-fold increase of eNOS phosphorylation in the inhibitory residue Thr495 (p = 0.034), which was fully counteracted by RBEE supplementation (p = 0.028), restoring ACh-induced vasodilatation (p = 0.00006). Dihydroethidium fluorescence of superoxide and picrosirius red staining of collagen were reduced by RBEE supplementation of HF diet by 76.91% (p = 0.022) and 65.87% (p = 0.030), respectively. CONCLUSION: RBEE supplemented diet reduced vessel remodeling and oxidative stress. Moreover, RBEE supplemented diet increased NO release by downregulating p-eNOS(Thr495), thus, protecting the endothelial function.


Subject(s)
Dietary Supplements , Endothelium, Vascular/metabolism , Oryza/chemistry , Vascular Remodeling , Animals , Apamin/pharmacology , Arteries/metabolism , Charybdotoxin/pharmacology , Collagen/chemistry , Elastin/chemistry , Indomethacin/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Microcirculation , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/chemistry , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress , Oxygen/chemistry , Superoxides/chemistry , Vascular Stiffness , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL