Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Therm Biol ; 72: 118-126, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29496004

ABSTRACT

Thoracic and abdominal pigmentation were measured in Drosophila melanogaster under a cold circadian stress (8-25 °C) and a heat one (18-33 °C) and compared to the phenotypes observed under similar but constant temperatures of 17 or 25 °C respectively. An isofemale line design permitted to submit each line (full sibs) to the four thermal regimes. Under cold stress, the pigmentation was similar to the value observed at constant 25 °C, suggesting a kind of functional dominance of the high temperature phase. In all cases, thermal stresses increased the individual environmental variance, i.e., increased the developmental instability. Genetic correlations between lines were not modified by the stresses but provided some unexpected and surprising results, which should be confirmed by further investigations: for example, negative correlations between pigmentation and body size or sternopleural bristle number. As a whole, the data do not confirm the hypothesis that under stressing conditions a hidden genetic variability could be unravelled, permitting a faster adaptation to environmental changes.


Subject(s)
Cold-Shock Response , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Heat-Shock Response , Pigmentation , Animals , Female , Genetic Variation , Phenotype
2.
J Genet ; 83(2): 163-70, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15536255

ABSTRACT

Restricted maximum likelihood was used to estimate genetic parameters of male and female wing and thorax length in isofemale lines of Drosophila melanogaster, and results compared to estimates obtained earlier with the classical analysis of variance approach. As parents within an isofemale line were unknown, a total of 500 parental pedigrees were simulated and mean estimates computed. Full and half sibs were distinguished, in contrast to usual isofemale studies in which animals were all treated as half sibs and hence heritability was overestimated. Heritability was thus estimated at 0.33, 0.38, 0.30 and 0.33 for male and female wing length and male and female thorax length, respectively, whereas corresponding estimates obtained using analysis of variance were 0.46, 0.54, 0.35 and 0.38. Genetic correlations between male and female traits were 0.85 and 0.62 for wing and thorax length, respectively. Sexual dimorphism and the ratio of female to male traits were moderately heritable (0.30 and 0.23 for wing length, 0.38 and 0.23 for thorax length). Both were moderately and positively correlated with female traits, and weakly and negatively correlated with male traits. Such heritabilities confirmed that sexual dimorphism might be a fast evolving trait in Drosophila.


Subject(s)
Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/genetics , Animals , Female , Likelihood Functions , Male , Models, Genetic , Sex Characteristics , Thorax/anatomy & histology , Wings, Animal/anatomy & histology
3.
Genetica ; 120(1-3): 151-63, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15088655

ABSTRACT

Numerous laboratory investigations have compared Drosophila melanogaster and D. simulans for various life history traits and fitness related ecophysiological parameters. From presently available information, it is however difficult to get a general comparative pattern describing the divergence of their ecological niches and understanding their demographic success. Two environmental factors seem however to have played a major role: temperature and alcoholic resources. From an ecophysiological approach, D. simulans may be described as generally more sensitive to stresses; other results point to this species as more cold adapted than its sibling; in some cases, however, D. simulans may appear as better adapted to a warm environment. When investigated, ecophysiological traits show a lesser geographic variability in D. simulans than in D. melanogaster. Presently available information does not explain the ecological prevalence of D. simulans in many places with a mild temperate or subtropical climate. This is presumably due to the fact that most comparisons have been done at a single, standard temperature of 25 degrees C. Comparative studies should be undertaken, spanning the thermal ranges of the two species, and the phenotypic plasticity of ecophysiological traits should now be considered.


Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Drosophila/genetics , Drosophila/physiology , Acetic Acid/metabolism , Alcohols/metabolism , Animals , Carbon Dioxide , Circadian Rhythm , Climate , Ecology , Fertility , Flight, Animal , Genetic Variation , Male , Phenotype , Temperature , Time Factors
4.
Genet Res ; 81(1): 25-32, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12693680

ABSTRACT

We investigated the phenotypic plasticity of sternopleural bristle (SB) number as a function of growth temperature in isofemale lines from temperate (France) and tropical (Congo) populations of Drosophila melanogaster. We found concave reaction norms with a maximum in the middle of the thermal range, except in four African lines which exhibited a regularly decreasing response curve. Genetic variability (intraclass correlation) and evolvability (genetic CV, coefficient of variation) were independent properties and did not change with temperature. Residual, within-line variability was, however, strongly influenced by growth temperature, showing a U-shaped response curve and a minimum CV of 9% at 21.5 degrees C. As expected from a previously known latitudinal cline, maximum values (MV) were higher in temperate than in tropical flies. The temperature of maximum value (TMV) was observed at a higher temperature in the tropical population, in agreement with similar adaptive trends already observed for other quantitative traits. Significant negative correlations within each population were observed between a plasticity curvature parameter and MV or TMV. No difference in curvature was, however, observed between populations, in spite of their very different MVs.


Subject(s)
Drosophila/genetics , Phenotype , Animals , Female , Genetic Variation , Species Specificity
5.
J Genet ; 82(3): 79-88, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15133187

ABSTRACT

Most animal species exhibit sexual size dimorphism (SSD). SSD is a trait difficult to quantify for genetical purposes since it must be simultaneously measured on two kinds of individuals, and it is generally expressed either as a difference or as a ratio between sexes. Here we ask two related questions: What is the best way to describe SSD, and is it possible to conveniently demonstrate its genetic variability in a natural population? We show that a simple experimental design, the isofemale-line technique (full-sib families), may provide an estimate of genetic variability, using the coefficient of intraclass correlation. We consider two SSD indices, the female-male difference and the female/male ratio. For two size-related traits, wing and thorax length, we found that both SSD indices were normally distributed. Within each family, the variability of SSD was estimated by considering individual values in one sex (the female) with respect to the mean value in the other sex (the male). In a homogeneous sample of 30 lines of Drosophila melanogaster, both indices provided similar intraclass correlations, on average 0.21, significantly greater than zero but lower than those for the traits themselves: 0.50 and 0.36 for wing and thorax length respectively. Wing and thorax length were strongly positively correlated within each sex. SSD indices of wing and thorax length were also positively correlated, but to a lesser degree than for the traits themselves. For comparative evolutionary studies, the ratio between sexes seems a better index of SSD since it avoids scaling effects among populations or species, permits comparisons between different traits, and has an unambiguous biological significance. In the case of D. melanogaster grown at 25 degrees C, the average female/male ratios are very similar for the wing (1.16) and the thorax (1.15), and indicate that, on average, these size traits are 15-16% longer in females.


Subject(s)
Drosophila melanogaster/genetics , Genetic Variation , Sex Characteristics , Animals , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...