Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 26(6): 1130-1139, 2020 06.
Article in English | MEDLINE | ID: mdl-32441630

ABSTRACT

Classical bovine spongiform encephalopathy (BSE) is the only zoonotic prion disease described to date. Although the zoonotic potential of atypical BSE prions have been partially studied, an extensive analysis is still needed. We conducted a systematic study by inoculating atypical BSE isolates from different countries in Europe into transgenic mice overexpressing human prion protein (PrP): TgMet129, TgMet/Val129, and TgVal129. L-type BSE showed a higher zoonotic potential in TgMet129 mice than classical BSE, whereas Val129-PrP variant was a strong molecular protector against L-type BSE prions, even in heterozygosis. H-type BSE could not be transmitted to any of the mice. We also adapted 1 H- and 1 L-type BSE isolate to sheep-PrP transgenic mice and inoculated them into human-PrP transgenic mice. Atypical BSE prions showed a modification in their zoonotic ability after adaptation to sheep-PrP producing agents able to infect TgMet129 and TgVal129, bearing features that make them indistinguishable of sporadic Creutzfeldt-Jakob disease prions.


Subject(s)
Encephalopathy, Bovine Spongiform , Prion Diseases , Prions , Animals , Brain/metabolism , Cattle , Europe , Mice , Mice, Transgenic , Prions/genetics , Prions/metabolism , Sheep
2.
Environ Res ; 151: 587-594, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27591838

ABSTRACT

The environment plays a key role in horizontal transmission of prion diseases, since prions are extremely resistant to classical inactivation procedures. In prior work, we observed the high stability of bovine spongiform encephalopathy (BSE) infectivity when these prions were incubated in aqueous media such as phosphate-buffered saline (PBS) or wastewater for nearly nine months. As a continuation of this experiment, the same samples were maintained in PBS or wastewater for five additional years and residual BSE infectivity was assessed in bovine PrPC transgenic mice. Over this long time period (more than six years), BSE infectivity was reduced by three and one orders of magnitude in wastewater and PBS respectively. To rule out a possible agent specific effect, sheep scrapie prions were subjected to the same experimental protocol, using eight years as the experimental end-point. No significant reduction in scrapie infectivity was observed over the first nine months of wastewater incubation while PBS incubation for eight years only produced a two logarithmic unit reduction in infectivity. By contrast, the dynamics of PrPRes persistence was different, disappearing progressively over the first year. The long persistence of prion infectivity observed in this study for two different agents provides supporting evidence of the assumed high stability of these agents in aquatic environments and that environmental processes or conventional wastewater treatments with low retention times would have little impact on prion infectivity. These results could have great repercussions in terms of risk assessment and safety for animals and human populations.


Subject(s)
Encephalopathy, Bovine Spongiform/transmission , Phosphates/chemistry , Prions/pathogenicity , Scrapie/transmission , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Animals , Biological Assay , Cattle , Mice, Transgenic , Prions/analysis , Prions/genetics , Sheep , Time Factors , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...