Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Epigenetics ; 17(1): 110-116, 2022 01.
Article in English | MEDLINE | ID: mdl-33491552

ABSTRACT

Gastric cancer (GC) is one of the leading types of fatal cancer worldwide. Epigenetic manipulation of cancer cells is a useful tool to better understand gene expression regulatory mechanisms and contributes to the discovery of novel biomarkers. Our research group recently reported a list of 83 genes that are potentially modulated by DNA methylation in GC cell lines. Herein, we further explored the regulation of one of these genes, LRRC37A2, in clinical samples. LRRC37A2 expression was evaluated by RT-qPCR, and DNA methylation was studied using next-generation bisulphite sequencing in 36 GC and paired adjacent nonneoplastic tissue samples. We showed that both reduced LRRC37A2 mRNA levels and increased LRRC37A2 exon methylation were associated with undifferentiated and poorly differentiated tumours. Moreover, LRRC37A2 gene expression and methylation levels were inversely correlated at the +45 exon CpG site. We suggest that DNA hypermethylation may contribute to reducing LRRC37A2 expression in undifferentiated and poorly differentiated GC. Therefore, our results show how some genes may be useful to stratify patients who are more likely to benefit from epigenetic therapy.Abbreviations: AR: androgen receptor; 5-AZAdC: 5-aza-2'-deoxycytidine; B2M: beta-2-microglobulin; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GC: gastric cancer; GLM: general linear model; LRRC37A2: leucine-rich repeat containing 37 member A2; SD: standard deviation; TFII-I: general transcription factor II-I; TSS: transcription start site; XBP1: X-box binding protein 1.


Subject(s)
DNA Methylation , Stomach Neoplasms , Cell Line, Tumor , CpG Islands , Decitabine , Gene Expression Regulation, Neoplastic , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
2.
J Mol Med (Berl) ; 98(5): 707-717, 2020 05.
Article in English | MEDLINE | ID: mdl-32285140

ABSTRACT

Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Very few therapeutic options are currently available in this neoplasia. The use of 5-Aza-2'-deoxycytidine (5-AZAdC) was approved for the treatment of myelodysplastic syndromes, and this drug can treat solid tumours at low doses. Epigenetic manipulation of GC cell lines is a useful tool to better understand gene expression regulatory mechanisms for clinical applications. Therefore, we compared the gene expression profile of 5-AZAdC-treated and untreated GC cell lines by a microarray assay. Among the genes identified in this analysis, we selected NRN1 and TNFAIP3 to be evaluated for gene expression by RT-qPCR and DNA methylation by bisulfite DNA next-generation sequencing in 43 and 52 pairs of GC and adjacent non-neoplastic tissue samples, respectively. We identified 83 candidate genes modulated by DNA methylation in GC cell lines. Increased expression of NRN1 and TNFAIP3 was associated with advanced tumours (P < 0.05). We showed that increased NRN1 and TNFAIP3 expression seems to be regulated by DNA demethylation in GC samples: inverse correlations between the mRNA and DNA methylation levels in the promoter of NRN1 (P < 0.05) and the intron of TNFAIP3 (P < 0.05) were detected. Reduced NRN1 promoter methylation was associated with III/IV TNM stage tumours (P = 0.03) and the presence of Helicobacter pylori infection (P = 0.02). The identification of demethylated activated genes in GC may be useful in clinical practice, stratifying patients who are less likely to benefit from 5-AZAdC-based therapies. KEY MESSAGES: Higher expression of NRN1 and TNFAIP3 is associated with advanced gastric cancer (GC). NRN1 promoter hypomethylation contributes to gene upregulation in advanced GC. TNFAIP3 intronic-specific CpG site demethylation contributes to gene upregulation in GC. These findings may be useful to stratify GC patients who are less likely to benefit from DNA demethylating-based therapies.


Subject(s)
DNA Demethylation , Gene Expression Regulation, Neoplastic , Neuropeptides/genetics , Stomach Neoplasms/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Azacitidine/pharmacology , Biomarkers, Tumor , Cell Line, Tumor , Computational Biology/methods , CpG Islands , DNA Methylation , Decitabine/pharmacology , Epigenesis, Genetic , GPI-Linked Proteins/genetics , Gene Expression Profiling , Humans , Neoplasm Staging , Prognosis , Stomach Neoplasms/pathology , Transcriptome
3.
Biotechnol J ; 10(4): 536-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25511658

ABSTRACT

Increasing economic interest in Jatropha curcas requires a major research focus on the genetic background and geographic origin of this non-edible biofuel crop. To determine the worldwide genetic structure of this species, amplified fragment length polymorphisms, inter simple sequence repeats, and novel single nucleotide polymorphisms (SNPs) were employed for a large collection of 907 J. curcas accessions and related species (RS) from three continents, 15 countries and 53 regions. PCoA, phenogram, and cophenetic analyses separated RS from two J. curcas groups. Accessions from Mexico, Bolivia, Paraguay, Kenya, and Ethiopia with unknown origins were found in both groups. In general, there was a considerable overlap between individuals from different regions and countries. The Bayesian approach using STRUCTURE demonstrated two groups with a low genetic variation. Analysis of molecular varience revealed significant variation among individuals within populations. SNPs found by in silico analyses of Δ12 fatty acid desaturase indicated possible changes in gene expression and thus in fatty acid profiles. SNP variation was higher in the curcin gene compared to genes involved in oil production. Novel SNPs allowed separating toxic, non-toxic, and Mexican accessions. The present study confirms that human activities had a major influence on the genetic diversity of J. curcas, not only because of domestication, but also because of biased selection.


Subject(s)
Jatropha/classification , Jatropha/genetics , Africa , Genetic Variation , South America
SELECTION OF CITATIONS
SEARCH DETAIL