Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ChemMedChem ; 18(23): e202300305, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37845178

ABSTRACT

There are currently no small molecules clinically approved as immune checkpoint modulators. Besides possessing oral bioavailability, cell-penetrating capabilities and enhanced tumor penetration compared to monoclonal antibodies (mAbs), small molecules are amenable to pharmacokinetic optimization, which allows adopting flexible dosage regimens that may avoid immune-related adverse events associated with mAbs. The interaction of inducible co-stimulator (ICOS) with its ligand (ICOS-L) plays key roles in T-cell differentiation and activation of T-cell to B-cell functions. This study represents the development and validation of a virtual screening strategy to identify small molecules that bind a novel druggable binding pocket in human ICOS. We used a lipophilic canyon in the apo-structure of ICOS and the ICOS/ICOS-L interface individually as templates for molecular dynamics simulation to generate 3D pharmacophores subsequently used for virtual screening campaigns. Our strategy was successful finding a first-in-class small molecule ICOS binder (5P, KD value=108.08±26.76 µM) and validating biophysical screening platforms for ICOS-targeted small molecules. We anticipate that future structural optimization of 5P will result in the discovery of high affinity chemical ligands for ICOS.


Subject(s)
Pharmacophore , T-Lymphocytes , Humans , Inducible T-Cell Co-Stimulator Protein/metabolism , T-Lymphocytes/metabolism , Antibodies, Monoclonal
2.
J Med Chem ; 66(16): 11464-11475, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37566998

ABSTRACT

T-cell immunoglobulin and mucin domain 3 (TIM-3) is a negative immune checkpoint that represents a promising target for cancer immunotherapy. Although encouraging results have been observed for TIM-3 inhibition in the context of acute myeloid leukemia (AML), targeting TIM-3 is currently restricted to monoclonal antibodies (mAbs). To fill this gap, we implemented a pharmacophore-based screening approach to identify small-molecule TIM-3 inhibitors. Our approach resulted in the identification of hit compounds with TIM-3 binding affinity. Subsequently, we used the structure-activity relationship (SAR) by a catalog approach to identify compound A-41 with submicromolar TIM-3 binding affinity. Remarkably, A-41 demonstrated the ability to block TIM-3 interactions with key ligands and inhibited the immunosuppressive function of TIM-3 using an in vitro coculture assay. This work will pave the way for future drug discovery efforts aiming at the development of small-molecule inhibitors TIM-3 for AML.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Leukemia, Myeloid, Acute , Humans , Antibodies, Monoclonal/therapeutic use , Coculture Techniques , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Pharmacophore
3.
Front Microbiol ; 14: 1197120, 2023.
Article in English | MEDLINE | ID: mdl-37250020

ABSTRACT

Cell entry of most alphaherpesviruses is mediated by the binding of glycoprotein D (gD) to different cell surface receptors. Equine herpesvirus type 1 (EHV-1) and EHV-4 gDs interact with equine major histocompatibility complex I (MHC-I) to initiate entry into equine cells. We have characterized the gD-MHC-I interaction by solving the crystal structures of EHV-1 and EHV-4 gDs (gD1, gD4), performing protein-protein docking simulations, surface plasmon resonance (SPR) analysis, and biological assays. The structures of gD1 and gD4 revealed the existence of a common V-set immunoglobulin-like (IgV-like) core comparable to those of other gD homologs. Molecular modeling yielded plausible binding hypotheses and identified key residues (F213 and D261) that are important for virus binding. Altering the key residues resulted in impaired virus growth in cells, which highlights the important role of these residues in the gD-MHC-I interaction. Taken together, our results add to our understanding of the initial herpesvirus-cell interactions and will contribute to the targeted design of antiviral drugs and vaccine development.

4.
ChemMedChem ; 18(9): e202200635, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36812048

ABSTRACT

SARS coronavirus main proteases (3CL proteases) have been validated as pharmacological targets for the treatment of coronavirus infections. Current inhibitors of SARS main protease, including the clinically admitted drug nirmatrelvir are peptidomimetics with the downsides of this class of drugs including limited oral bioavailability, cellular permeability, and rapid metabolic degradation. Here, we investigate covalent fragment inhibitors of SARS Mpro as potential alternatives to peptidomimetic inhibitors in use today. Starting from inhibitors acylating the enzyme's active site, a set of reactive fragments was synthesized, and the inhibitory potency was correlated with the chemical stability of the inhibitors and the kinetic stability of the covalent enzyme-inhibitor complex. We found that all tested acylating carboxylates, several of them published prominently, were hydrolyzed in assay buffer and the inhibitory acyl-enzyme complexes were rapidly degraded leading to the irreversible inactivation of these drugs. Acylating carbonates were found to be more stable than acylating carboxylates, however, were inactive in infected cells. Finally, reversibly covalent fragments were investigated as chemically stable SARS CoV-2 inhibitors. Best was a pyridine-aldehyde fragment with an IC50 of 1.8 µM at a molecular weight of 211 g/mol, showing that pyridine fragments indeed are able to block the active site of SARS-CoV-2 main protease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Pyridines/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
5.
Pharmaceuticals (Basel) ; 15(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35745598

ABSTRACT

Kappa-opioid receptor (KOR) antagonists are promising innovative therapeutics for the treatment of the central nervous system (CNS) disorders. The new scaffold opioid ligand, Compound A, was originally found as a mu-opioid receptor (MOR) antagonist but its binding/selectivity and activation profile at the KOR and delta-opioid receptor (DOR) remain elusive. In this study, we present an in vitro, in vivo and in silico characterization of Compound A by revealing this ligand as a KOR antagonist in vitro and in vivo. In the radioligand competitive binding assay, Compound A bound at the human KOR, albeit with moderate affinity, but with increased affinity than to the human MOR and without specific binding at the human DOR, thus displaying a preferential KOR selectivity profile. Following subcutaneous administration in mice, Compound A effectively reverse the antinociceptive effects of the prototypical KOR agonist, U50,488. In silico investigations were carried out to assess the structural determinants responsible for opioid receptor subtype selectivity of Compound A. Molecular docking, molecular dynamics simulations and dynamic pharmacophore (dynophore) generation revealed differences in the stabilization of the chlorophenyl moiety of Compound A within the opioid receptor binding pockets, rationalizing the experimentally determined binding affinity values. This new chemotype bears the potential for favorable ADMET properties and holds promise for chemical optimization toward the development of potential therapeutics.

6.
Mol Inform ; 40(9): e2100031, 2021 09.
Article in English | MEDLINE | ID: mdl-34378348

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to be a global threat, causing millions of deaths worldwide. SARS-CoV-2 is an enveloped virus with spike (S) glycoproteins conferring binding to the host cell's angiotensin-converting enzyme 2 (ACE2), which is critical for cellular entry. The host range of the virus extends well beyond humans and non-human primates. Natural and experimental infections have confirmed the high susceptibility of cats, ferrets, and Syrian hamsters, whereas dogs, mice, rats, pigs, and chickens are refractory to SARS-CoV-2 infection. To investigate the underlying reason for the variable susceptibility observed in different species, we have developed molecular descriptors to efficiently analyse dynamic simulation models of complexes between SARS-CoV-2 S and ACE2. Our extensive analyses represent the first systematic structure-based approach that allows predictions of species susceptibility to SARS-CoV-2 infection.


Subject(s)
SARS-CoV-2/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Cats , Dogs , Ferrets , Haplorhini , Humans , Mesocricetus , Mice , Molecular Dynamics Simulation , Rats , SARS-CoV-2/metabolism , Species Specificity , Swine
7.
Drug Discov Today ; 26(10): 2456-2464, 2021 10.
Article in English | MEDLINE | ID: mdl-34161845

ABSTRACT

Human cytochrome P450 (CYP) enzymes are widely known for their pivotal role in the metabolism of drugs and other xenobiotics as well as of endogenous chemicals. In addition, CYPs are involved in numerous pathophysiological pathways and, hence, are therapeutically relevant. Remarkably, a portion of promising CYP targets is still understudied and, as a consequence, untargeted, despite their huge therapeutic potential. An increasing number of X-ray and cryo-electron microscopy (EM) structures for CYPs have recently provided new insights into the structural basis of CYP function and potential ligand binding. This structural knowledge of CYP functionality is essential for both understanding metabolism and exploiting understudied CYPs as drug targets. In this review, we summarize and highlight structural knowledge about this enzyme class, with a focus on understudied CYPs and resulting opportunities for structure-based drug design. Teaser: This review summarizes recent structural insights into understudied cytochrome P450 enzymes. We highlight the impact of molecular modeling for mechanistically explaining pathophysiological effects establishing understudied CYPs as promising drug targets.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Models, Molecular , Pharmaceutical Preparations/metabolism , Cytochrome P-450 Enzyme System/metabolism , Humans , Ligands , Xenobiotics/metabolism
8.
Methods Mol Biol ; 2266: 227-238, 2021.
Article in English | MEDLINE | ID: mdl-33759130

ABSTRACT

Three-dimensional pharmacophore models have been proven extremely valuable in exploring novel chemical space through virtual screening. However, traditional pharmacophore-based approaches need ligand information and rely on static snapshots of highly dynamic systems. In this chapter, we describe PyRod, a novel tool to generate three-dimensional pharmacophore models based on water traces of a molecular dynamics simulation of an apo-protein.The protocol described herein was successfully applied for the discovery of novel drug-like inhibitors of West Nile virus NS2B-NS3 protease. By using this recent example, we highlight the key steps of the generation and validation of PyRod-derived pharmacophore models and their application for virtual screening.


Subject(s)
Drug Discovery/methods , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Software , Viral Proteases/chemistry , Water/chemistry , Binding Sites , Ligands , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Protein Binding , Small Molecule Libraries , Viral Nonstructural Proteins/chemistry , West Nile virus/chemistry
9.
Angew Chem Int Ed Engl ; 60(24): 13294-13301, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33749121

ABSTRACT

The generation of bioactive molecules from inactive precursors is a crucial step in the chemical evolution of life, however, mechanistic insights into this aspect of abiogenesis are scarce. Here, we investigate the protein-catalyzed formation of antivirals by the 3C-protease of enterovirus D68. The enzyme induces aldol condensations yielding inhibitors with antiviral activity in cells. Kinetic and thermodynamic analyses reveal that the bioactivity emerges from a dynamic reaction system including inhibitor formation, alkylation of the protein target by the inhibitors, and competitive addition of non-protein nucleophiles to the inhibitors. The most active antivirals are slowly reversible inhibitors with elongated target residence times. The study reveals first examples for the chemical evolution of bio-actives through protein-catalyzed, non-enzymatic C-C couplings. The discovered mechanism works under physiological conditions and might constitute a native process of drug development.


Subject(s)
3C Viral Proteases/antagonists & inhibitors , Antiviral Agents/chemistry , Enterovirus D, Human/enzymology , Evolution, Chemical , 3C Viral Proteases/metabolism , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Biocatalysis , Carbon/chemistry , Enterovirus D, Human/drug effects , Humans , Kinetics , Thermodynamics
10.
ACS Med Chem Lett ; 11(4): 514-520, 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32292558

ABSTRACT

The pivotal role of viral proteases in virus replication has already been successfully exploited in several antiviral drug design campaigns. However, no efficient antivirals are currently available against flaviviral infections. In this study, we present lead-like small molecule inhibitors of the Zika Virus (ZIKV) NS2B-NS3 protease. Since only few nonpeptide competitive ligands are known, we take advantage of the high structural similarity with the West Nile Virus (WNV) NS2B-NS3 protease. A comparative modeling approach involving our in-house software PyRod was employed to systematically analyze the binding sites and develop molecular dynamics-based 3D pharmacophores for virtual screening. The identified compounds were biochemically characterized revealing low micromolar affinity for both ZIKV and WNV proteases. Their lead-like properties together with rationalized binding modes represent valuable starting points for future lead optimization. Since the NS2B-NS3 protease is highly conserved among flaviviruses, these compounds may also drive the development of pan-flaviviral antiviral drugs.

11.
RSC Med Chem ; 11(12): 1402-1412, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-34095847

ABSTRACT

Metabolic pathways mediated by human gut bacteria have emerged as potential therapeutic targets because of their association with the pathophysiology of various human diseases. The anaerobic transformation of choline into trimethylamine (TMA) by gut microbiota is directly linked to type 2 diabetes, fatty liver disease, and cardiovascular diseases. Structural analogs of choline have been developed as competitive inhibitors of choline TMA-lyase (CutC), a key enzyme for the conversion of choline to TMA. However, weak to moderate CutC inhibitory profiles of the choline analogs limit their further advancement into clinical translation. In this study, we introduce a glycomimetic-based approach for the identification of CutC inhibitors with intestinal metabolic stability. Our workflow started with screening of a small library of glycomimetics for metabolic stability in the presence of human intestinal S9 fraction. Further screening using an in vitro CutC inhibitory assay identified a benzoxazole ligand (BO-I) as a CutC inhibitor with an IC50 value of 2.4 ± 0.3 µM. Kinetic analysis revealed that BO-I functions as a non-competitive inhibitor of CutC. Interestingly, BO-I reduced the production of TMA in whole cell assays of multiple bacterial strains as well as in complex biological environments. Therefore, structural optimization of BO-I holds promise for the development of efficient gut microbiota-targeted small molecules.

12.
J Chem Inf Model ; 59(6): 2818-2829, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31117512

ABSTRACT

Ligands entering a protein binding pocket essentially compete with water molecules for binding to the protein. Hence, the location and thermodynamic properties of water molecules in protein structures have gained increased attention in the drug design community. Including corresponding data into 3D pharmacophore modeling is essential for efficient high throughput virtual screening. Here, we present PyRod, a free and open-source Python software that allows for visualization of pharmacophoric binding pocket characteristics, identification of hot spots for ligand binding, and subsequent generation of pharmacophore features for virtual screening. The implemented routines analyze the protein environment of water molecules in molecular dynamics (MD) simulations and can differentiate between hydrogen bonded waters as well as waters in a protein environment of hydrophobic, charged, or aromatic atom groups. The gathered information is further processed to generate dynamic molecular interaction fields (dMIFs) for visualization and pharmacophoric features for virtual screening. The described software was applied to 5 therapeutically relevant drug targets, and generated pharmacophores were evaluated using DUD-E benchmarking sets. The best performing pharmacophore was found for the HIV1 protease with an early enrichment factor of 54.6. PyRod adds a new perspective to structure-based screening campaigns by providing easy-to-interpret dMIFs and purely protein-based pharmacophores that are solely based on tracing water molecules in MD simulations. Since structural information about cocrystallized ligands is not needed, screening campaigns can be followed, for which less or no ligand information is available. PyRod is freely available at https://github.com/schallerdavid/pyrod .


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Proteins/metabolism , Software , Water/chemistry , Binding Sites , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...