ABSTRACT
Demyelination is among the most conspicuous neurological sequelae of SARS-CoV-2 infection (COVID-19) in both the central (CNS) and peripheral (PNS) nervous systems. Several hypotheses have been proposed to explain the mechanisms underlying demyelination in COVID-19. However, none have considered the SARS-CoV-2's effects on the renin-angiotensin-aldosterone system (RAAS). Therefore, our objective in this review is to evaluate how RAAS imbalance, caused by direct and indirect effects of SARS-CoV-2 infection, could contribute to myelin loss in the PNS and CNS. In the PNS, we propose that demyelination transpires from two significant changes induced by SARS-CoV-2 infection, which include upregulation of ADAM-17 and induction of lymphopenia. Whereas, in the CNS, demyelination could result from RAAS imbalance triggering two alterations: (1) a decrease in angiotensin type II receptor (AT2R) activity, responsible for restraining defense cells' action on myelin; (2) upregulation of ADAM-17 activity, leading to impaired maturation of oligodendrocytes and myelin formation. Thus, we hypothesize that increased ADAM-17 activity and decreased AT2R activity play roles in SARS-CoV-2 infection-mediated demyelination in the CNS.
ABSTRACT
Crack cocaine is a highly addictive and potent stimulant drug. Animal studies have shown that the cholinergic system plays a role in neurotoxicity induced by cocaine or its active metabolites inhalation. Behavioral alterations associated with crack cocaine use include hyperactivity, depressed mood, and decreased seizure threshold. Here we evaluate the acetylcholinesterase (AChE) and reactive oxygen species (ROS) activity, behavioral profile, and the threshold for epileptic seizures in rats that received intrahippocampal pilocarpine (H-PILO) followed by exposure to crack cocaine (H-PILO + CRACK). Animals exposed to H-PILO + CRACK demonstrated increased severity and frequency of limbic seizures. The AChE activity was reduced in the groups exposed to crack cocaine alone (CRACK) and H-PILO + CRACK, whereas levels of ROS remained unchanged. In addition, crack cocaine exposure increased vertical locomotor activity, without changing water and sucrose intake. Short-term memory consolidation remained unchanged after H-PILO, H-PILO + CRACK, and CRACK administration. Overall, our data suggest that crack cocaine inhalation reduced the threshold for epileptic seizures in rats submitted to low doses of pilocarpine through the inhibition of AChE. Taken together, our findings can be useful in the development of effective strategies for preventing and treating the harmful effects of cocaine and crack cocaine on the central nervous system.
Subject(s)
Acetylcholinesterase , Crack Cocaine , Pilocarpine , Rats, Wistar , Seizures , Animals , Male , Acetylcholinesterase/metabolism , Rats , Pilocarpine/toxicity , Seizures/chemically induced , Administration, Inhalation , Disease Models, Animal , Reactive Oxygen Species/metabolism , Motor Activity/drug effects , Hippocampus/drug effects , Hippocampus/metabolismABSTRACT
PURPOSE: This study investigated the anthelmintic efficacy of therapeutic baths with the essential oil of Piper marginatum Jacq against the monogeneans Anacanthorus spathulatus Kritsky, Thatcher & Kayton, 1979, Notozothecium janauachensis Belmont-Jégu, Domingues & Laterça 2004, Mymarothecium boegeri Cohen & Kohn, 2005 and Linguadactyloides brinkmanni Thatcher & Krytsky, 1983 in Colossoma macropomum Cuvier, 1818, and its hematological and histopathological effects on this fish. METHODS: Short six therapeutic baths with 100 mg/L of the essential oil of P. marginatum and two control groups (water from the cultivation tank and water from the cultivation tank + 70% alcohol) were used for 20 min every two days. RESULTS: The therapeutic baths with 100 mg/L of the essential oil of P. marginatum had efficacy of 42.8% against monogeneans of C. macropomum gills. Toxicity was low for C. macropomum, because there were few physiological and histopathological changes that did not compromise the functioning of the gills of this fish. CONCLUSION: Short therapeutic baths with 100 mg/L of the essential oil of P. marginatum had low efficacy for controlling monogeneans in C. macropomum and thus cannot be recommended.
Subject(s)
Characiformes , Fish Diseases , Gills , Oils, Volatile , Piper , Trematode Infections , Animals , Oils, Volatile/pharmacology , Fish Diseases/parasitology , Fish Diseases/drug therapy , Characiformes/parasitology , Gills/parasitology , Trematode Infections/veterinary , Trematode Infections/parasitology , Trematode Infections/drug therapy , Piper/chemistry , Anthelmintics/pharmacology , Trematoda/drug effectsABSTRACT
Status epilepticus (SE) is described as continuous and self-sustaining seizures, which triggers hippocampal neurodegeneration, inflammation, and gliosis. N-formyl peptide receptor (FPR) has been associated with inflammatory process. N-formyl-methionyl-leucyl-phenylalanine (fMLP) peptide plays an anti-inflammatory role, mediated by the activation of G-protein-coupled FPR. Here, we evaluated the influence of fMLP peptides on the behavior of limbic seizures, memory consolidation, and hippocampal neurodegeneration process. Male Wistar rats (Rattus norvegicus) received microinjections of pilocarpine in hippocampus (H-PILO, 1.2 mg/µL, 1 µL) followed by fMLP (1 mg/mL, 1 µL) or vehicle (VEH, saline 0.9%, 1 µL). During the 90 min of SE, epileptic seizures were analyzed according to the Racine's Scale. After 24 h of SE, memory impairment was assessed by the inhibitory avoidance test and the neurodegeneration process was evaluated in hippocampal areas. There was no change in latency and number of wet dog shake (WDS) after administration of fMLP. However, our results showed that the intrahippocampal infusion of fMLP reduced the severity of seizures, as well as the number of limbic seizures. In addition, fMLP infusion protected memory dysfunction followed by SE. Finally, the intrahippocampal administration of fMLP attenuated the process of neurodegeneration in both hippocampi. Taken together, our data suggest a new insight into the functional role of fMLP peptides, with important implications for their potential use as a therapeutic agent for the treatment of brain disorders, such as epilepsy. Schematic drawing on the neuroprotective and anticonvulsant role of fMLP during status epilepticus. Initially, a cannula was implanted in hippocampus and pilocarpine/saline was administered into the hippocampus followed by fMLP/saline (A-C). fMLP reduced seizure severity and neuronal death in the hippocampus, as well as protecting against memory deficit (D).
Subject(s)
Epilepsy , Status Epilepticus , Rats , Male , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , N-Formylmethionine Leucyl-Phenylalanine/therapeutic use , Pilocarpine/therapeutic use , Rats, Wistar , Status Epilepticus/drug therapy , Status Epilepticus/complications , Seizures/drug therapy , Epilepsy/drug therapy , Peptides/therapeutic useABSTRACT
Melanoma is one of the most aggressive tumors, and its lethality is associated with the ability of malignant cells to migrate and invade surrounding tissues to colonize distant organs and to generate widespread metastasis. The serine/arginine protein kinases 1 and 2 (SRPK1 and SRPK2) are classically related to the control of pre-mRNA splicing through SR protein phosphorylation and have been found overexpressed in many types of cancer, including melanoma. Previously, we have demonstrated that the pharmacological inhibition of SRPKs impairs pulmonary colonization of metastatic melanoma in mice. As the used compounds could target at least both SRPK1 and SRPK2, here we sought to obtain additional clues regarding the involvement of these paralogs in melanoma progression. We analyzed single-cell RNA sequencing data of melanoma patient cohorts and found that SRPK2 expression in melanoma cells is associated with poor prognosis. Consistently, CRISPR-Cas9 genome targeting of SRPK2, but not SRPK1, impaired actin polymerization dynamics as well as the proliferative and invasive capacity of B16F10 cells in vitro. In further in vivo experiments, genetic targeting of SRPK2, but not SRPK1, reduced tumor progression in both subcutaneous and caudal vein melanoma induction models. Taken together, these findings suggest different functional roles for SRPK1/2 in metastatic melanoma and highlight the relevance of pursuing selective pharmacological inhibitors of SRPK2.
ABSTRACT
Intrahippocampal pilocarpine microinjection (H-PILO) induces status epilepticus (SE) that can lead to spontaneous recurrent seizures (SRS) and neurodegeneration in rodents. Studies using animal models have indicated that lectins mediate a variety of biological activities with neuronal benefits, especially galectin-1 (GAL-1), which has been identified as an effective neuroprotective compound. GAL-1 is associated with the regulation of cell adhesion, proliferation, programmed cell death, and immune responses, as well as attenuating neuroinflammation. Here, we administrated GAL-1 to Wistar rats and evaluated the severity of the SE, neurodegenerative and inflammatory patterns in the hippocampal formation. Administration of GAL-1 caused a reduction in the number of class 2 and 4 seizures, indicating a decrease in seizure severity. Furthermore, we observed a reduction in inflammation and neurodegeneration 24 h and 15 days after SE. Overall, these results suggest that GAL-1 has a neuroprotective effect in the early stage of epileptogenesis and provides new insights into the roles of exogenous lectins in temporal lobe epilepsy (TLE).
Subject(s)
Epilepsy, Temporal Lobe , Neuroprotective Agents , Status Epilepticus , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Galectin 1/pharmacology , Galectin 1/therapeutic use , Galectin 1/metabolism , Rats, Wistar , Status Epilepticus/drug therapy , Status Epilepticus/metabolism , Pilocarpine , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/metabolism , Seizures/metabolism , Hippocampus/metabolism , Disease Models, AnimalABSTRACT
Este artigo aborda a crescente crise na saúde pública vivida pelo município do Rio de Janeiro e o advento da pandemia de Covid-19, que veio a agravá-la, como elementos do debate sobre o trabalho na Atenção Básica à Saúde. Ele é resultado das articulações feitas pelo Programa de Ensino pelo Trabalho (PET) para a Saúde Interprofissional, que visa induzir transformações nos cursos de graduação e nos serviços de saúde, com foco na colaboração e no trabalho interprofissional. A discussão sobre a financeirização e os interesses em torno do trabalho do campo da saúde mostram a face perversa dos modos de governo no capitalismo contemporâneo, revelando a bio e necropolítica como estratégias de capitulação do SUS. Na conclusão, são assinaladas a resistência e a potência do trabalho articulado como estratégia de luta pela saúde como direito social.
This article addresses the growing public health crisis experienced by the city of Rio de Janeiro and the advent of the Covid-19 pandemic, which aggravated it, as elements of the debate on work in Primary Health Care. It is the result of articulations made by the Teaching Through Work Program (PET) for Interprofessional Health, which aims to induce transformations in undergraduate courses and in health services, focusing on collaboration and interprofessional work. The discussion about financialization and interests surrounding the work in the field of Health shows the perverse face of the modes of government in contemporary capitalism, revealing biopolitics and necropolitics as Unified Health System (SUS) capitulation strategies. In conclusion, the resistance and the power of articulated work as a strategy to fight for health as a social right are highlighted.
Este artículo toma la creciente crisis de salud pública vivida por el municipio de Río de Janeiro y el advenimiento de la pandemia de Covid-19, que la empeoró, como elementos del debate sobre el trabajo en la Atención Básica a la Salud. Él es resultado de las articulaciones realizadas por el Programa de Enseñanza por Trabajo (PET) Salud Interprofesionalidad, que tiene por objetivo inducir transformaciones en los cursos de licenciatura y en los servicios de salud, enfocando en la colaboración y el trabajo interprofesión. La discusión sobre la financiarización y los intereses en torno del trabajo del SUS muestran la perversidad de los modos de gobierno en el capitalismo contemporáneo, revelando la biopolítica y la necropolítica como estrategias de capitulación del SUS. En la conclusión se señala la resistencia y el poder del trabajo articulado como estrategia de lucha por la salud como derecho social.
Subject(s)
Humans , Primary Health Care , Unified Health System , COVID-19 , Health Policy , Public Policy , Teaching , Brazil , Family Health , Health Strategies , Health GovernanceABSTRACT
Crack users suffer the effects of cocaine present in the drug and the action of other active compounds from its pyrolysis. An emergent fact is an increase in the number of pregnant crack cocaine users. Studies suggest that crack cocaine and its metabolites cross the placenta, promoting premature birth, fever, irritability, sweating, and seizures in the early months of life. In children, the effects of crack cocaine have been associated with cognitive deficits, difficulty in verbalization, aggressiveness, and depression, besides enhancing the susceptibility to epileptic seizures, including status epilepticus (SE) in adulthood. Therefore, we investigated the effect of maternal exposure to smoke crack cocaine on several behavioral parameters in the offspring during adulthood. A series of behavioral tests and intrahippocampal pilocarpine (H-PILO) microinjection at sub-convulsive and convulsive doses in a rat model demonstrated that exposure to crack cocaine during the embryonic period leads to anxiogenic-like behavior and long-term memory impairment in both genders and promotes depressive-like behavior in the female. Besides, crack cocaine offspring exposed to a sub-convulsive H-PILO dose showed higher susceptibility to SE, increased seizure frequency, and neurodegeneration, while animals that received a convulsive dose of H-PILO displayed no alteration in SE severity. Taken together, our data suggest that crack cocaine exposure during the gestational period leads to an increased predilection for anxiety and depression, long-term memory deficits, and reduction in the threshold for developing epileptic seizures associated with neuronal death, which predispose crack cocaine babies to develop neuropsychological disorders.
Subject(s)
Cocaine-Related Disorders , Crack Cocaine , Epilepsy , Status Epilepticus , Animals , Anxiety/chemically induced , Crack Cocaine/toxicity , Female , Male , Memory Disorders/chemically induced , Pilocarpine/toxicity , Pregnancy , Rats , Seizures/chemically inducedABSTRACT
Status epilepticus (SE) is defined as continuous and self-sustaining seizures, which trigger hippocampal neurodegeneration, mitochondrial dysfunction, oxidative stress, and energy failure. During SE, the neurons become overexcited, increasing energy consumption. Glucose uptake is increased via the sodium glucose cotransporter 1 (SGLT1) in the hippocampus under epileptic conditions. In addition, modulation of glucose can prevent neuronal damage caused by SE. Here, we evaluated the effect of increased glucose availability in behavior of limbic seizures, memory dysfunction, neurodegeneration process, neuronal activity, and SGLT1 expression. Vehicle (VEH, saline 0.9%, 1 µL) or glucose (GLU; 1, 2 or 3 mM, 1 µL) were administered into hippocampus of male Wistar rats (Rattus norvegicus) before or after pilocarpine to induce SE. Behavioral analysis of seizures was performed for 90 min during SE. The memory and learning processes were analyzed by the inhibitory avoidance test. After 24 h of SE, neurodegeneration process, neuronal activity, and SGLT1 expression were evaluated in hippocampal and extrahippocampal regions. Modulation of hippocampal glucose did not protect memory dysfunction followed by SE. Our results showed that the administration of glucose after pilocarpine reduced the severity of seizures, as well as the number of limbic seizures. Similarly, glucose after SE reduced cell death and neuronal activity in hippocampus, subiculum, thalamus, amygdala, and cortical areas. Finally, glucose infusion elevated the SGLT1 expression in hippocampus. Taken together our data suggest that possibly the administration of intrahippocampal glucose protects brain in the earlier stage of epileptogenic processes via an important support of SGLT1.
Subject(s)
Glucose/metabolism , Hippocampus/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Cell Death , Hippocampus/enzymology , Hippocampus/pathology , Hippocampus/physiopathology , Male , Memory Consolidation , Neurons/pathology , Oxidative Stress , Pilocarpine , Rats, Wistar , Severity of Illness Index , Sodium-Glucose Transporter 1/metabolism , Status Epilepticus/physiopathologyABSTRACT
Status epilepticus (SE) can lead to serious neuronal damage and act as an initial trigger for epileptogenic processes that may lead to temporal lobe epilepsy (TLE). Besides promoting neurodegeneration, neuroinflammation, and abnormal neurogenesis, SE can generate an extensive hypometabolism in several brain areas and, consequently, reduce intracellular energy supply, such as adenosine triphosphate (ATP) molecules. Although some antiepileptic drugs show efficiency to terminate or reduce epileptic seizures, approximately 30% of TLE patients are refractory to regular antiepileptic drugs (AEDs). Modulation of glucose availability may provide a novel and robust alternative for treating seizures and neuronal damage that occurs during epileptogenesis; however, more detailed information remains unknown, especially under hypo- and hyperglycemic conditions. Here, we review several pathways of glucose metabolism activated during and after SE, as well as the effects of hypo- and hyperglycemia in the generation of self-sustained limbic seizures. Furthermore, this study suggests the control of glucose availability as a potential therapeutic tool for SE.
Subject(s)
Glucose/metabolism , Hyperglycemia/complications , Hyperglycemia/metabolism , Status Epilepticus/complications , Status Epilepticus/metabolism , Animals , Disease Models, Animal , Humans , Membrane Transport Proteins/metabolism , Nerve Degeneration/complications , Nerve Degeneration/metabolismABSTRACT
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) affect >200 000 individuals yearly with a 40% mortality rate. Although platelets are implicated in the progression of ALI/ARDS, their exact role remains undefined. Triggering receptor expressed in myeloid cells (TREM)-like transcript 1 (TLT-1) is found on platelets, binds fibrinogen, and mediates clot formation. We hypothesized that platelets use TLT-1 to manage the progression of ALI/ARDS. Here we retrospectively measure plasma levels of soluble TLT-1 (sTLT-1) from the ARDS Network clinical trial and show that patients whose sTLT-1 levels were >1200 pg/mL had nearly twice the mortality risk as those with <1200 pg/mL (P < .001). After correcting for confounding factors such as creatinine levels, Acute Physiology And Chronic Health Evaluation III scores, age, platelet counts, and ventilation volume, sTLT-1 remains significant, suggesting that sTLT-1 is an independent prognostic factor (P < .0001). These data point to a role for TLT-1 during the progression of ALI/ARDS. We use a murine lipopolysaccharide-induced ALI model and demonstrate increased alveolar bleeding, aberrant neutrophil transmigration and accumulation associated with decreased fibrinogen deposition, and increased pulmonary tissue damage in the absence of TLT-1. The loss of TLT-1 resulted in an increased proportion of platelet-neutrophil conjugates (43.73 ± 24.75% vs 8.92 ± 2.4% in wild-type mice), which correlated with increased neutrophil death. Infusion of sTLT-1 restores normal fibrinogen deposition and reduces pulmonary hemorrhage by 40% (P ≤ .001) and tissue damage by 25% (P ≤ .001) in vivo. Our findings suggest that TLT-1 uses fibrinogen to govern the transition between inflammation and hemostasis and facilitate controlled leukocyte transmigration during the progression of ARDS.
Subject(s)
Acute Lung Injury/blood , Blood Platelets/metabolism , Receptors, Immunologic/blood , Respiratory Distress Syndrome/blood , Acute Lung Injury/pathology , Animals , Blood Platelets/pathology , Disease Models, Animal , Humans , Mice , Mice, Knockout , Neutrophil Infiltration , Neutrophils/metabolism , Neutrophils/pathology , Predictive Value of Tests , Respiratory Distress Syndrome/pathology , Transendothelial and Transepithelial MigrationABSTRACT
The induced expression of nitric oxide synthase (iNOS) controls the intracellular growth of Leishmania in infected macrophages. Histones deacetylases (HDACs) negatively regulate gene expression through the formation of complexes containing transcription factors such as NF-κB p50/50. Herein, we demonstrated the occupancy of p50/p50_HDAC1 to iNOS promoter associated with reduced levels of H3K9Ac. Remarkably, we found increased levels of HDAC1 in L. amazonensis-infected macrophages. HDAC1 upregulation was not found in L. major-infected macrophages. The parasite intracellular load was reduced in HDAC1 knocked-down macrophages, which presented increased nitric oxide levels. HDAC1 silencing led to the occupancy of CBP/p300 to iNOS promoter and the rise of H3K9Ac modification. Importantly, the immunostaining of skin samples from hiporeactive cutaneous leishmaniasis patients infected with L. amazonensis, revealed high levels of HDAC1. In brief, L. amazonensis induces HDAC1 in infected macrophages, which contribute to parasite survival and is associated to hiporeactive stage found in L. amazonensis infected patients.
Subject(s)
Histone Deacetylase 1/metabolism , Leishmania braziliensis/physiology , Leishmaniasis, Cutaneous/immunology , Macrophages/immunology , Nitric Oxide Synthase Type II/metabolism , Skin/pathology , Adolescent , Adult , Cells, Cultured , Child , Extinction, Biological , Female , Histone Deacetylase 1/genetics , Host-Parasite Interactions , Humans , Immune Evasion , Leishmaniasis, Cutaneous/genetics , Male , Middle Aged , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Parasite Load , Promoter Regions, Genetic/genetics , Protein Binding , RNA, Small Interfering/genetics , Sp1 Transcription Factor/metabolism , Young AdultABSTRACT
Temporal lobe epilepsy (TLE) is characterized by spontaneous recurrent seizures, starting from secondary functional disorders due to several insults, including self-sustaining continuous seizures identified as status epilepticus (SE). Although hypoglycemia has been associated with SE, the effect of inhibition of the Na(+)/glucose cotransporters (SGLTs) on hippocampus during SE is still unknown. Here we evaluated the functional role of SGLT in the pattern of limbic seizures and neurodegeneration process after pilocarpine (PILO)-induced SE. Vehicle (VEH, 1µL) or phlorizin, a specific SGLT inhibitor (PZN, 1µL, 50µg/µL), was administered in the hippocampus of rats 30min before PILO (VEH+PILO or PZN+PILO, respectively). The limbic seizures were classified using the Racine's scale, and the amount of wet dog shakes (WDS) was quantified before and during SE. Neurodegeneration process was evaluated by Fluoro-Jade C (FJ-C), and FJ-C-positive neurons (FJ-C+) were counted 24h and 15days after SE. The PZN-treated rats showed higher (p<0.05) number of WDS when compared with VEH+PILO. There was no difference in seizure severity between PZN+PILO and VEH+PILO groups. However, the pattern of limbic seizures significantly changed in PZN+PILO. Indeed, the class 5 seizures repeated themselves more times (p<0.05) than the other classes in the PZN group at 50min after SE induction. The PZN+PILO animals had a higher (p<0.05) number of FJ-C+ cells in the dentate gyrus (DG), hilus, and CA3 and CA1 of hippocampus, when compared with VEH+PILO. The PZN+PILO animals had a decreased number (p<0.05) of FJ-C+ cells in CA1 compared with VEH+PILO 15days after SE induction. Taken together, our data suggest that SGLT inhibition with PZN increased the severity of limbic seizures during SE and increased neurodegeneration in hippocampus 24h after SE, suggesting that SGLT1 and SGLT2 could participate in the modulation of earlier stages of epileptogenic processes.