ABSTRACT
The Aedes aegypti cadherin-like protein (Aae-Cad) and the membrane-bound alkaline phosphatase (Aae-mALP) are membrane proteins identified as putative receptors for the larvicidal Cry toxins produced by Bacillus thuringiensis subsp. israelensis bacteria. Cry toxins are the most used toxins in the control of different agricultural pest and mosquitos. Despite the relevance of Aae-Cad and Aae-mALP as possible toxin-receptors in mosquitoes, previous efforts to establish a clear functional connection among them and Cry toxins activity have been relatively limited. In this study, we used CRISPR-Cas9 to generate knockout (KO) mutations of Aae-Cad and Aae-mALP. The Aae-mALP KO was successfully generated, in contrast to the Aae-Cad KO which was obtained only in females. The female-linked genotype was due to the proximity of aae-cad gene to the sex-determining loci (M:m). Both A. aegypti KO mutant populations were viable and their insect-development was not affected, although a tendency on lower egg hatching rate was observed. Bioassays were performed to assess the effects of these KO mutations on the susceptibility of A. aegypti to Cry toxins, showing that the Aae-Cad female KO or Aae-mALP KO mutations did not significantly alter the susceptibility of A. aegypti larvae to the mosquitocidal Cry toxins, including Cry11Aa, Cry11Ba, Cry4Ba, and Cry4Aa. These findings suggest that besides the potential participation of Aae-Cad and Aae-mALP as Cry toxin receptors in A. aegypti, additional midgut membrane proteins are involved in the mode of action of these insecticidal toxins.
Subject(s)
Aedes , Alkaline Phosphatase , Bacillus thuringiensis Toxins , Bacterial Proteins , CRISPR-Cas Systems , Cadherins , Endotoxins , Hemolysin Proteins , Animals , Aedes/genetics , Aedes/drug effects , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Female , Cadherins/genetics , Cadherins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticide Resistance/genetics , Gene Knockout Techniques , Larva/genetics , Larva/growth & development , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Male , Insecticides/pharmacologyABSTRACT
Pore forming toxins rely on oligomerization for membrane insertion to kill their targets. Bacillus thuringiensis produces insecticidal Cry-proteins composed of three domains that form pores that kill the insect larvae. Domain I is involved in oligomerization and membrane insertion, whereas Domains II and III participate in receptor binding and specificity. However, the structural changes involved in membrane insertion of these proteins remain unsolved. The most widely accepted model for membrane insertion, the 'umbrella model', proposed that the α-4/α-5 hairpin of Domain I swings away and is inserted into the membrane. To determine the topology of Cry1Ab in the membrane, disulfide bonds linking α-helices of Domain I were introduced to restrict their movement. Disulfide bonds between helices α-2/α-3 or α-3/α-4 lost oligomerization and toxicity, indicating that movement of these helices is needed for insecticidal activity. By contrast, disulfide bonds linking helices α-5/α-6 did not affect toxicity, which contradicts the 'umbrella model'. Additionally, Föster resonance energy transfer closest approach analyses measuring distances of different points in the toxin to the membrane plane and collisional quenching assays analysing the protection of specific fluorescent-labeled residues to the soluble potassium iodide quencher in the membrane inserted state were performed. Overall, the data show that Domain I from Cry1Ab may undergo a major conformational change during its membrane insertion, where the N-terminal region (helices α-1 to α-4) participates in oligomerization and toxicity, probably forming an extended helix. These data break a paradigm, showing a new 'folding white-cane model', which better explains the structural changes of Cry toxins during insertion into the membrane.
Subject(s)
Bacillus thuringiensis , Insecticides , Animals , Insecticides/toxicity , Bacillus thuringiensis/genetics , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/metabolism , Bacterial Proteins/metabolism , Endotoxins/chemistry , Hemolysin Proteins/metabolism , Disulfides/metabolism , Larva/metabolismABSTRACT
Different Bacillus thuringiensis (Bt) strains produce a broad variety of pore-forming toxins (PFTs) that show toxicity against insects and other invertebrates. Some of these insecticidal PFT proteins have been used successfully worldwide to control diverse insect crop pests. There are several studies focused on describing the mechanism of action of these toxins that have helped to improve their performance and to cope with the resistance evolved by different insects against some of these proteins. However, crucial information that is still missing is the structure of pores formed by some of these PFTs, such as the three-domain crystal (Cry) proteins, which are the most commercially used Bt toxins in the biological control of insect pests. In recent years, progress has been made on the identification of the structural changes that certain Bt insecticidal PFT proteins undergo upon membrane insertion. In this review, we describe the models that have been proposed for the membrane insertion of Cry toxins. We also review the recently published structures of the vegetative insecticidal proteins (Vips; e.g. Vip3) and the insecticidal toxin complex (Tc) in the membrane-inserted state. Although different Bt PFTs show different primary sequences, there are some similarities in the three-dimensional structures of Vips and Cry proteins. In addition, all PFTs described here must undergo major structural rearrangements to pass from a soluble form to a membrane-inserted state. It is proposed that, despite their structural differences, all PFTs undergo major structural rearrangements producing an extended α-helix, which plays a fundamental role in perforating their target membrane, resulting in the formation of the membrane pore required for their insecticidal activity.
ABSTRACT
Bacillus thuringiensis (Bt) are soil ubiquitous bacteria. They produce a great variability of insecticidal proteins, where certain of these toxins are used worldwide for pest control. Through their adaptation to diverse ecosystems, certain Bt strains have acquired genetic mobile elements by horizontal transfer, harboring genes that encode for different virulent factors and pesticidal proteins (PP). Genomic characterization of Bt strains provides a valuable source of PP with potential biotechnological applications for pest control. In this work, we have sequenced the complete genome of the bacterium Bt GR007 strain that is toxic to Spodoptera frugiperda and Manduca sexta larvae. Four replicons (one circular chromosome and three megaplasmids) were identified. The two largest megaplasmids (pGR340 and pGR157) contain multiple genes that codify for pesticidal proteins: 10 cry genes (cry1Ab, cry1Bb, cry1Da, cry1Fb, cry1Hb, cry1Id, cry1Ja, cry1Ka, cry1Nb, and cry2Ad), two vip genes (vip3Af and vip3Ag), two binary toxin genes (vpa2Ac and vpb1Ca), five genes that codify for insecticidal toxin components (Tc's), and a truncated cry1Bd-like gene. In addition, genes that codify for several virulent factors were also found in this strain. Proteomic analysis of the parasporal crystals of GR007 revealed that they are composed of eight Cry proteins. Further cloning of these genes for their individual expression in Bt acrystalliferous strain, by means of their own intrinsic promoter showed expression of seven Cry proteins. These proteins display differential toxicity against M. sexta and S. frugiperda larvae, where Cry1Bb showed to be the most active protein against S. frugiperda larvae and Cry1Ka the most active protein against M. sexta larvae.
ABSTRACT
The insecticidal Cry11Aa and Cyt1Aa proteins are produced by Bacillus thuringiensis as crystal inclusions. They work synergistically inducing high toxicity against mosquito larvae. It was proposed that these crystal inclusions are rapidly solubilized and activated in the gut lumen, followed by pore formation in midgut cells killing the larvae. In addition, Cyt1Aa functions as a Cry11Aa binding receptor, inducing Cry11Aa oligomerization and membrane insertion. Here, we used fluorescent labeled crystals, protoxins or activated toxins for in vivo localization at nano-scale resolution. We show that after larvae were fed solubilized proteins, these proteins were not accumulated inside the gut and larvae were not killed. In contrast, if larvae were fed soluble non-toxic mutant proteins, these proteins were found inside the gut bound to gut-microvilli. Only feeding with crystal inclusions resulted in high larval mortality, suggesting that they have a role for an optimal intoxication process. At the macroscopic level, Cry11Aa completely degraded the gastric caeca structure and, in the presence of Cyt1Aa, this effect was observed at lower toxin-concentrations and at shorter periods. The labeled Cry11Aa crystal protein, after midgut processing, binds to the gastric caeca and posterior midgut regions, and also to anterior and medium regions where it is internalized in ordered "net like" structures, leading finally to cell break down. During synergism both Cry11Aa and Cyt1Aa toxins showed a dynamic layered array at the surface of apical microvilli, where Cry11Aa is localized in the lower layer closer to the cell cytoplasm, and Cyt1Aa is layered over Cry11Aa. This array depends on the pore formation activity of Cry11Aa, since the non-toxic mutant Cry11Aa-E97A, which is unable to oligomerize, inverted this array. Internalization of Cry11Aa was also observed during synergism. These data indicate that the mechanism of action of Cry11Aa is more complex than previously anticipated, and may involve additional steps besides pore-formation activity.
Subject(s)
Aedes/drug effects , Bacillus thuringiensis Toxins/metabolism , Drug Synergism , Endotoxins/metabolism , Gastrointestinal Tract/drug effects , Hemolysin Proteins/metabolism , Insecticides/metabolism , Larva/drug effects , Aedes/metabolism , Animals , Bacillus thuringiensis Toxins/genetics , Bacillus thuringiensis Toxins/toxicity , Bacterial Proteins , Endotoxins/genetics , Endotoxins/toxicity , Gastrointestinal Tract/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/toxicity , Insecticides/toxicity , Larva/metabolism , Protein BindingABSTRACT
Helicoverpa armigera is a major insect pest of several crops worldwide. This insect is susceptible to some Bacillus thuringiensis (Bt) Cry insecticidal proteins expressed in transgenic crops or used in biopesticides. Previously, we identified H. armigera prohibitin (HaPHB) as a Cry1Ac-binding protein. Here, we further analyzed the potential role of PHB as a Cry toxin receptor in comparison to cadherin (CAD), well recognized as a Cry1Ac receptor. HaPHB-2 midgut protein and HaCAD toxin-binding region (TBR) fragment from H. armigera were expressed in Escherichia coli cells, and binding assays with different Cry1 toxins were performed. We demonstrated that Cry1Ab, Cry1Ac, and Cry1Fa toxins bound to HaPHB-2 in a manner similar to that seen with HaCAD-TBR. Different Cry1Ab mutant toxins located in domain II (Cry1AbF371A and Cry1AbG439D) or domain III (Cry1AbL511A and Cry1AbN514A), which were previously characterized and found to be affected in receptor binding, were analyzed regarding their binding interaction with HaPHB-2 and toxicity against H. armigera One ß-16 mutant (Cry1AbN514A) showed increased binding to HaPHB-2 that correlated with 6-fold-higher toxicity against H. armigera, whereas the other ß-16 mutant (Cry1AbL511A) was affected in binding to HaPHB-2 and lost toxicity against H. armigera Our data indicate that ß-16 from domain III of Cry1Ab is involved in interactions with HaPHB-2 and in toxicity. This report identifies a region of Cry1Ab involved in binding to HaPHB-2 from a Lepidoptera insect, suggesting that this protein may participate as a novel receptor in the mechanism of action of the Cry1 toxins in H. armigeraIMPORTANCEHelicoverpa armigera is a polyphagous pest that feeds on important crops worldwide. This insect pest is sensitive to different Cry1 toxins from Bacillus thuringiensis In this study, we analyzed the potential role of PHB-2 as a Cry1 toxin receptor in comparison to CAD. We show that different Cry1 toxins bound to HaPHB-2 and HaCAD-TBR similarly and identify ß-16 from domain III of Cry1Ab as a binding region involved in the interaction with HaPHB-2 and in toxicity. This report characterized HaPHB-Cry1 binding interaction, providing novel insights into potential target sites for improving Cry1 toxicity against H. armigera.
Subject(s)
Bacillus thuringiensis Toxins/toxicity , Endotoxins/toxicity , Hemolysin Proteins/toxicity , Insect Proteins/metabolism , Repressor Proteins/metabolism , Animals , Bacillus thuringiensis Toxins/genetics , Binding Sites , Endotoxins/genetics , Hemolysin Proteins/genetics , Larva , Moths , Prohibitins , Protein DomainsABSTRACT
Cry proteins produced by Bacillus thuringiensis are pore-forming toxins that disrupt the membrane integrity of insect midgut cells. The structure of such pore is unknown, but it has been shown that domain I is responsible for oligomerization, membrane insertion and pore formation activity. Specifically, it was proposed that some N-terminal α-helices are lost, leading to conformational changes that trigger oligomerization. We designed a series of mutants to further analyze the molecular rearrangements at the N-terminal region of Cry1Ab toxin that lead to oligomer assembly. For this purpose, we introduced Cys residues at specific positions within α-helices of domain I for their specific labeling with extrinsic fluorophores to perform Föster resonance energy transfer analysis to fluorescent labeled Lys residues located in Domains II-III, or for disulfide bridges formation to restrict mobility of conformational changes. Our data support that helix α-1 of domain I is cleaved out and swings away from the toxin core upon binding with Manduca sexta brush border membrane vesicles. That movement of helix α-2b is also required for the conformational changes involved in oligomerization. These observations are consistent with a model proposing that helices α-2b and α-3 form an extended helix α-3 necessary for oligomer assembly of Cry toxins.
Subject(s)
Bacillus cereus/metabolism , Bacillus thuringiensis Toxins/pharmacology , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Manduca/drug effects , Pest Control, Biological , Animals , Bacillus cereus/genetics , Bacillus thuringiensis Toxins/chemistry , Bacillus thuringiensis Toxins/genetics , Bacillus thuringiensis Toxins/metabolism , Endotoxins/chemistry , Endotoxins/genetics , Endotoxins/metabolism , Hemolysin Proteins/chemistry , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Manduca/metabolism , Microvilli/drug effects , Microvilli/metabolism , Mutation , Protein Conformation, alpha-Helical , Protein Multimerization , Structure-Activity RelationshipABSTRACT
Salmonella enterica serotype Typhimurium is a bacterium that causes gastroenteritis and diarrhea in humans. The genome of S. Typhimurium codes for diverse virulence factors, among which are the toxin-antitoxin (TA) systems. SehAB is a type II TA, where SehA is the toxin and SehB is the antitoxin. It was previously reported that the absence of the SehB antitoxin affects the growth of S. Typhimurium. In addition, the SehB antitoxin can interact directly with the SehA toxin neutralizing its toxic effect as well as repressing its own expression. We identified conserved residues on SehB homologous proteins. Point mutations were introduced at both N- and C-terminal of SehB antitoxin to analyze the effect of these changes on its transcription repressor function, on its ability to form homodimers and on the virulence of S. Typhimurium. All changes in amino acid residues at both the N- and C-terminal affected the repressor function of SehB antitoxin and they were required for DNA-binding activity. Mutations in the amino acid residues at the N-terminal showed a lower capacity for homodimer formation of the SehB protein. However, none of the SehB point mutants were affected in the interaction with the SehA toxin. In terms of virulence, the eight single-amino acid mutations were attenuated for virulence in the mouse model. In agreement with our results, the eight amino acid residues of SehB antitoxin were required for its repressor activity, affecting both homodimerization and DNA-binding activity, supporting the notion that both activities of SehB antitoxin are required to confer virulence to Salmonella enterica.
ABSTRACT
The binary (Bin) toxin from Lysinibacillus sphaericus is effective to mosquito larvae, but its utilization is threatened by the development of insect resistance. Bin toxin is composed of the BinB subunit required for binding to midgut receptors and the BinA subunit that causes toxicity after cell internalization, mediated by BinB. Culex quinquefasciatus resistance to this toxin is caused by mutations that prevent expression of Bin toxin receptors in the midgut. Previously, it was shown that the Cyt1Aa toxin from Bacillus thuringiensis subsp. israelensis restores Bin toxicity to Bin-resistant C. quinquefasciatus and to Aedes aegypti larvae, which are naturally devoid of functional Bin receptors. Our goal was to elucidate the mechanism involved in Cyt1Aa synergism with Bin in such larvae. In vivo assays showed that the mixture of Bin toxin, or its BinA subunit, with Cyt1Aa was effective to kill resistant larvae. However, no specific binding interaction between Cyt1Aa and the Bin toxin, or its subunits, was observed. The synergy between Cyt1Aa and Bin toxins is dependent on functional Cyt1Aa, as demonstrated by using the nontoxic Cyt1AaV122E mutant toxin affected in oligomerization and membrane insertion, which was unable to synergize Bin toxicity in resistant larvae. The synergism correlated with the internalization of Bin or BinA into anterior and medium midgut epithelial cells, which occurred only in larvae treated with wild-type Cyt1Aa toxin. This toxin is able to overcome failures in the binding step involving BinB receptor by allowing the internalization of Bin toxin, or its BinA subunit, into the midgut cells.IMPORTANCE One promising management strategy for mosquito control is the utilization of a mixture of L. sphaericus and B. thuringiensis subsp. israelensis insecticidal toxins. From this set, Bin and Cyt1Aa toxins synergize and display toxicity to resistant C. quinquefasciatus and to A. aegypti larvae, whose midgut cells lack Bin toxin receptors. Our data set provides evidence that functional Cyt1Aa is essential for internalization of Bin or its BinA subunit into such cells, but binding interaction between Bin and Cyt1Aa is not observed. Thus, this mechanism contrasts with that for the synergy between Cyt1Aa and the B. thuringiensis subsp. israelensis Cry toxins, where active Cyt1Aa is not necessary but a specific binding between Cry and Cyt1Aa is required. Our study established the initial molecular basis of the synergy between Bin and Cyt1Aa, and these findings enlarge our knowledge of their mode of action, which could help to develop improved strategies to cope with insect resistance.
Subject(s)
Aedes/drug effects , Bacillaceae/chemistry , Bacillus thuringiensis/chemistry , Bacterial Proteins/pharmacology , Bacterial Toxins/pharmacology , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Aedes/growth & development , Animals , Bacillus thuringiensis Toxins , Drug Synergism , Larva/drug effects , Larva/growth & developmentABSTRACT
Bacillus thuringiensis Cry1Ca is toxic to different Spodoptera species. The aims of this work were to identify the Cry1Ca-binding proteins in S. frugiperda, to provide evidence on their participation in toxicity, and to identify the Cry1Ca amino acid residues involved in receptor binding. Pulldown assays using Spodoptera frugiperda brush border membrane vesicles (BBMV) identified aminopeptidase N (APN), APN1, and APN2 isoforms as Cry1Ca-binding proteins. Cry1Ca alanine substitutions in all residues of domain III ß16 were characterized. Two ß16 nontoxic mutants (V505A and S506A) showed a correlative defect on binding to the recombinant S. frugiperda APN1 (SfAPN1). Finally, silencing the expression of APN1 transcript, by double-stranded RNA (dsRNA) feeding, showed that silenced larvae are more tolerant of the Cry1Ca toxin, which induced less than 40% mortality in silenced larvae whereas nonsilenced larvae had 100% mortality. Overall, our results show that Cry1Ca relies on APN1 binding through domain III ß16 to impart toxicity to S. frugiperdaIMPORTANCEBacillus thuringiensis Cry toxins rely on receptor binding to exert toxicity. Cry1Ca is toxic to different populations of S. frugiperda, a major corn pest in America. Nevertheless, the S. frugiperda midgut proteins that are involved in Cry1Ca toxicity have not been identified. Here we identified aminopeptidase N1 (APN1) as a functional receptor of Cry1Ca. Moreover, we showed that Cry1Ca domain III ß16 is involved in APN1 binding. These results give insights on potential target sites for improving Cry1Ca toxicity to S. frugiperda.
Subject(s)
Bacillus thuringiensis/pathogenicity , Bacterial Proteins/metabolism , CD13 Antigens/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Pest Control, Biological/methods , Spodoptera/microbiology , Animals , Bacillus thuringiensis Toxins , CD13 Antigens/genetics , Protein Binding/physiology , Protein Domains/physiologyABSTRACT
Bacillus thuringiensis insecticidal Cry toxins break down larval midgut-cells after forming pores. The 3D-structures of Cry4Ba and Cry5Ba revealed a trimeric-oligomer after cleavage of helices α-1 and α-2a, where helix α-3 is extended and made contacts with adjacent monomers. Molecular dynamic simulations of Cry1Ab-oligomer model based on Cry4Ba-coordinates showed that E101 forms a salt-bridge with R99 from neighbor monomer. An additional salt bridge was identified in the trimeric-Cry5Ba, located at the extended helix α-3 in the region corresponding to the α-2b and α-3 loop. Both salt-bridges were analyzed by site directed mutagenesis. Single-point mutations in the Lepidoptera-specific Cry1Ab and Cry1Fa toxins were affected in toxicity, while reversed double-point mutant partially recovered the phenotype, consistent with a critical role of these salt-bridges. The single-point mutations in the salt-bridge at the extended helix α-3 of the nematicidal Cry5Ba were also non-toxic. The incorporation of this additional salt bridge into the nontoxic Cry1Ab-R99E mutant partially restored oligomerization and toxicity, supporting that the loop between α-2b and α-3 forms part of an extended helix α-3 upon oligomerization of Cry1 toxins. Overall, these results highlight the role in toxicity of salt-bridge formation between helices α-3 of adjacent monomers supporting a conformational change in helix α-3.
Subject(s)
Bacillus thuringiensis/metabolism , Bacterial Proteins/chemistry , Endotoxins/chemistry , Hemolysin Proteins/chemistry , Amino Acid Sequence , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Endotoxins/genetics , Endotoxins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Conformation, alpha-Helical , Protein Multimerization , Sequence AlignmentABSTRACT
The Cyt and Cry toxins are different pore-forming proteins produced by Bacillus thuringiensis bacteria, and used in insect-pests control. Cry-toxins have a complex mechanism involving interaction with several proteins in the insect gut such as aminopeptidase N (APN), alkaline phosphatase (ALP) and cadherin (CAD). It was shown that the loop regions of domain II of Cry toxins participate in receptor binding. Cyt-toxins are dipteran specific and interact with membrane lipids. We show that Cry1Ab domain II loop3 is involved in binding to APN, ALP and CAD receptors since point mutation Cry1Ab-G439D affected binding to these proteins. We hypothesized that construction of Cyt1A-hybrid proteins providing a binding site that recognizes gut proteins in lepidopteran larvae could result in improved Cyt1Aa toxin toward lepidopteran larvae. We constructed hybrid Cyt1Aa-loop3 proteins with increased binding interaction to Manduca sexta receptors and increased toxicity against two Lepidopteran pests, M. sexta and Plutella xylostella. The hybrid Cyt1Aa-loop3 proteins were severely affected in mosquitocidal activity and showed partial hemolytic activity but retained their capacity to synergize Cry11Aa toxicity against mosquitos. Our data show that insect specificity of Cyt1Aa toxin can be modified by introduction of loop regions from another non-related toxin with different insect specificity.
Subject(s)
Aedes/drug effects , Bacillus thuringiensis/metabolism , Bacterial Proteins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Insect Proteins/metabolism , Insecticides , Moths/metabolism , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/isolation & purification , Bacterial Proteins/toxicity , Biological Assay/methods , Endotoxins/isolation & purification , Endotoxins/toxicity , Hemolysin Proteins/isolation & purification , Hemolysin Proteins/toxicity , Insect Proteins/isolation & purification , Larva/drug effects , Mutagenesis, Site-Directed , Protein Binding/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/toxicity , Substrate Specificity/genetics , Toxicity Tests/methodsABSTRACT
Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin.IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity.
Subject(s)
Bacillus thuringiensis/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/toxicity , Endotoxins/chemistry , Endotoxins/toxicity , Hemolysin Proteins/chemistry , Hemolysin Proteins/toxicity , Insecticides/chemistry , Insecticides/toxicity , Aedes/drug effects , Animals , Bacillus thuringiensis Toxins , Drug Stability , Models, Molecular , Molecular Structure , Point MutationABSTRACT
This work examined the expression of the septum site determining gene (ssd) of Mycobacterium tuberculosis CDC1551 and its ∆sigD mutant under different growing conditions. The results showed an up-regulation of ssd during stationary phase and starvation conditions, but not during in vitro dormancy, suggesting a putative role for SigD in the control of ssd expression mainly under lack-of-nutrients environments. Furthermore, we elucidated a putative link between ssd expression and cell elongation of bacilli at stationary phase. In addition, a -35 sigD consensus sequence was found for the ssd promoter region, reinforcing the putative regulation of ssd by SigD, and in turn, supporting this protein role during the adaptation of M. tuberculosis to some stressful environments.
Subject(s)
Gene Expression Regulation, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Sigma Factor/physiology , Adaptation, Physiological/genetics , Bacterial Proteins/genetics , Base Sequence , Mycobacterium tuberculosis/metabolism , Promoter Regions, Genetic/genetics , Sequence Alignment , Stress, PhysiologicalABSTRACT
Bacillus thuringiensis Cry2Ab toxin has been used in combination with Cry1Ac for resistance management on the Bt-cotton that is widely planted worldwide. However, little is known regarding Cry2Ab mode of action. Particularly, there is a gap of knowledge on the identification of insect midgut proteins that bind Cry2Ab and mediate toxicity. In the case of Cry1Ab toxin, a transmembrane cadherin protein and glycosyl-phosphatidylinositol (GPI) anchored proteins like aminopeptidase-N1 (APN1) or alkaline-phosphatase (ALP) from Manduca sexta, have been shown to be important for oligomer formation and insertion into the membrane. Binding competition experiments showed that Cry2Ab toxin does not share binding sites with Cry1Ab toxin in M. sexta brush border membrane vesicles (BBMV). Also, that Cry2Ab shows reduced binding to the Cry1Ab binding molecules cadherin, APN1 or ALP. Finally, ligand blot experiments and protein sequence by LC-MS/MS identified APN2 isoform as a Cry2Ab binding protein. Cloning and expression of APN2 confirmed that APN2 is a Cry2Ab binding protein.
Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , CD13 Antigens/chemistry , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insect Proteins/chemistry , Manduca/enzymology , Receptors, Cell Surface/chemistry , Amino Acid Sequence , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/isolation & purification , Binding Sites , CD13 Antigens/isolation & purification , CD13 Antigens/metabolism , Endotoxins/chemistry , Hemolysin Proteins/chemistry , Insect Proteins/isolation & purification , Insect Proteins/metabolism , Insecticide Resistance , Isoenzymes/chemistry , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Ligands , Manduca/genetics , Receptors, Cell Surface/isolation & purification , Receptors, Cell Surface/metabolismABSTRACT
Enterotoxigenic Escherichia coli produces a long type 4 pilus called Longus. The regulatory elements and the environmental signals controlling the expression of Longus-encoding genes are unknown. We identified two genes lngR and lngS in the Longus operon, whose predicted products share homology with transcriptional regulators. Isogenic lngR and lngS mutants were considerably affected in transcription of lngA pilin gene. The expression of lngA, lngR and lngS genes was optimally expressed at 37°C at pH 7.5. The presence of glucose and sodium chloride had a positive effect on Longus expression. The presence of divalent ions, particularly calcium, appears to be an important stimulus for Longus production. In addition, we studied H-NS, CpxR and CRP global regulators, on Longus expression. The response regulator CpxR appears to function as a positive regulator of lng genes as the cpxR mutant showed reduced levels of lngRSA expression. In contrast, H-NS and CRP function as negative regulators since expression of lngA was up-regulated in isogenic hns and crp mutants. H-NS and CRP were required for salt- and glucose-mediated regulation of Longus. Our data suggest the existence of a complex regulatory network controlling Longus expression, involving both local and global regulators in response to different environmental signals.
Subject(s)
Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Enterotoxigenic Escherichia coli/pathogenicity , Escherichia coli Proteins/metabolism , Fimbriae, Bacterial/metabolism , Gene Regulatory Networks/genetics , Trans-Activators/metabolism , Bacterial Toxins/genetics , Cyclic AMP Receptor Protein/metabolism , DNA-Binding Proteins/metabolism , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Gene Expression Regulation, Bacterial/genetics , Trans-Activators/genetics , Virulence Factors/geneticsABSTRACT
Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and is responsible for causing peptic ulcers and gastric carcinoma. The expression of virulence factors allows the persistence of H. pylori in the stomach, which results in a chronic, sometimes uncontrolled inflammatory response. Type II toxin-antitoxin (TA) systems have emerged as important virulence factors in many pathogenic bacteria. Three type II TA systems have previously been identified in the genome of H. pylori 26695: HP0315-HP0316, HP0892-HP0893, and HP0894-HP0895. Here we characterized a heretofore undescribed type II TA system in H. pylori, HP0967-HP0968, which is encoded by the bicistronic operon hp0968-hp0967 and belongs to the Vap family. The predicted HP0967 protein is a toxin with ribonuclease activity whereas HP0968 is an antitoxin that binds to its own regulatory region. We found that all type II TA systems were expressed in H. pylori during early stationary growth phase, and differentially expressed in the presence of urea, nickel, and iron, although, the hp0968-hp0967 pair was the most affected under these environmental conditions. Transcription of hp0968-hp0967 was strongly induced in a mature H. pylori biofilm and when the bacteria interacted with AGS epithelial cells. Kanamycin and chloramphenicol considerably boosted transcription levels of all the four type II TA systems. The hp0968-hp0967 TA system was the most frequent among 317 H. pylori strains isolated from all over the world. This study is the first report on the transcription of type II TA genes in H. pylori under different environmental conditions. Our data show that the HP0967 and HP0968 proteins constitute a bona fide type II TA system in H. pylori, whose expression is regulated by environmental cues, which are relevant in the context of infection of the human gastric mucosa.
ABSTRACT
Bacillus thuringiensis (Bt) produces insecticidal proteins that have been used worldwide in the control of insect-pests in crops and vectors of human diseases. However, different insect species are poorly controlled by the available Bt toxins or have evolved resistance to these toxins. Evolution of Bt toxicity could provide novel toxins to control insect pests. To this aim, efficient display systems to select toxins with increased binding to insect membranes or midgut proteins involved in toxicity are likely to be helpful. Here we describe two display systems, phage display and ribosome display, that allow the efficient display of two non-structurally related Bt toxins, Cry1Ac and Cyt1Aa. Improved display of Cry1Ac and Cyt1Aa on M13 phages was achieved by changing the commonly used peptide leader sequence of the coat pIII-fusion protein, that relies on the Sec translocation pathway, for a peptide leader sequence that relies on the signal recognition particle pathway (SRP) and by using a modified M13 helper phage (Phaberge) that has an amber mutation in its pIII genomic sequence and preferentially assembles using the pIII-fusion protein. Also, both Cry1Ac and Cyt1Aa were efficiently displayed on ribosomes, which could allow the construction of large libraries of variants. Furthermore, Cry1Ac or Cyt1Aa displayed on M13 phages or ribosomes were specifically selected from a mixture of both toxins depending on which antigen was immobilized for binding selection. These improved systems may allow the selection of Cry toxin variants with improved insecticidal activities that could counter insect resistances.
ABSTRACT
BACKGROUND: Gram-negative bacilli are the most common bacteria causing nosocomial bloodstream infections (NBSIs) in Latin American countries. METHODS: The antibiotic resistance profiles of Gram-negative bacilli isolated from blood cultures in pediatric patients with NBSIs over a 3-year period in a tertiary care pediatric hospital in Mexico City were determined using the VITEK-2 system. Sixteen antibiotics were tested to ascertain the resistance rate and the minimum inhibitory concentration using the Clinical Laboratory Standards Institute (CLSI) broth micro-dilution method as a reference. RESULTS: A total of 931 isolates were recovered from 847 clinically significant episodes of NBSI. Of these, 477 (51.2%) were caused by Gram-negative bacilli. The most common Gram-negative bacilli found were Klebsiella pneumoniae (30.4%), Escherichia coli (18.9%), Enterobacter cloacae (15.1%), Pseudomonas aeruginosa (9.9%), and Acinetobacter baumannii (4.6%). More than 45 and 60% of the K. pneumoniae and E. coli isolates, respectively, were resistant to cephalosporins, and 64% of the E. coli isolates were resistant to fluoroquinolones. A. baumannii exhibited low rates of resistance to antibiotics tested. In the E. cloacae and P. aeruginosa isolates, no rates of resistance higher than 38% were observed. CONCLUSIONS: In this study, we found that the proportion of NBSIs due to antibiotic-resistant organisms is increasing in a tertiary care pediatric hospital of Mexico.
Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteremia/drug therapy , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Adolescent , Bacteremia/microbiology , Child , Child, Preschool , Cross Infection/drug therapy , Cross Infection/microbiology , Drug Resistance, Bacterial , Female , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/microbiology , Hospitals, Pediatric , Humans , Infant , Infant, Newborn , Male , Mexico , Microbial Sensitivity Tests , Prospective Studies , Tertiary Care CentersABSTRACT
The insecticidal Cry toxins are pore-forming toxins produced by the bacteria Bacillus thuringiensis that disrupt insect-midgut cells. In this work we analyzed the response of two different insect orders, the Lepidopteran Manduca sexta and Dipteran Aedes aegypti to highly specific Cry toxins, Cry1Ab and Cry11Aa, respectively. One pathway activated in different organisms in response to a variety of pore-forming toxins is the mitogen-activated protein kinase p38 pathway (MAPK p38) that activates a complex defense response. We analyzed the MAPK p38 activation by immunodetection of its phosphorylated isoform, and the induction of p38 by RT-PCR, real-time PCR quantitative assays and immunodetection. We show that MAPK p38 is activated at postraductional level after Cry toxin intoxication in both insect orders. We detected the p38 induction at the transcriptional and traductional level, and observed a different response. In these three levels, we found that both insects respond to Cry toxin action but M. sexta responses more strongly than A. aegypti. Gene silencing of MAPK p38 in vivo, resulted in both insect species becoming hypersensitive to Cry toxin action, suggesting that the MAPK p38 pathway is involved in insect defense against Bt Cry toxins. This finding may have biotechnological applications for enhancing the activity of some Bt Cry toxins against specific insect pests.