Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Microorganisms ; 12(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39065068

ABSTRACT

Phaseolotoxin is an antimetabolite toxin produced by diverse pathovars of Pseudomonas syringae which affects various plants, causing diseases of economic importance. Phaseolotoxin contributes to the systemic dissemination of the pathogen in the plant, therefore it is recognized as a major virulence factor. Genetic traits such as the Pht cluster, appear defining to the toxigenic strains phaseolotoxin producers. Extensive research has contributed to our knowledge concerning the regulation of phaseolotoxin revealing a complex regulatory network that involves processes at the transcriptional and posttranscriptional levels, in which specific and global regulators participate. Even more, significant advances in understanding how specific signals, including host metabolites, nutrient sources, and physical parameters such as the temperature, can affect phaseolotoxin production have been made. A general overview of the phaseolotoxin regulation, focusing on the chemical and physical cues, and regulatory pathways involved in the expression of this major virulence factor will be given in the present work.

2.
Microorganisms ; 12(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38792761

ABSTRACT

The competitive colonization of bacteria on similar ecological niches has a significant impact during their establishment. The synthesis speeds of different chemical classes of molecules during early competitive colonization can reduce the number of competitors through metabolic effects. In this work, we demonstrate for the first time that Kosakonia cowanii Cp1 previously isolated from the seeds of Capsicum pubescens R. P. produced volatile organic compounds (VOCs) during competitive colonization against Pectobacterium aroidearum SM2, affecting soft rot symptoms in serrano chili (Capsicum annuum L.). The pathogen P. aroidearum SM2 was isolated from the fruits of C. annuum var. Serrano with soft rot symptoms. The genome of the SM2 strain carries a 5,037,920 bp chromosome with 51.46% G + C content and 4925 predicted protein-coding genes. It presents 12 genes encoding plant-cell-wall-degrading enzymes (PCDEWs), 139 genes involved in five types of secretion systems, and 16 genes related to invasion motility. Pathogenic essays showed soft rot symptoms in the fruits of C. annuum L., Solanum lycopersicum, and Physalis philadelphica and the tubers of Solanum tuberosum. During the growth phases of K. cowanii Cp1, a mix of VOCs was identified by means of HS-SPME-GC-MS. Of these compounds, 2,5-dimethyl-pyrazine showed bactericidal effects and synergy with acetoin during the competitive colonization of K. cowanii Cp1 to completely reduce soft rot symptoms. This work provides novel evidence grounding a better understanding of bacterial interactions during competitive colonization on plant tissue, where VOC synthesis is essential and has a high potential capacity to control pathogenic microorganisms in agricultural systems.

3.
Curr Microbiol ; 81(7): 200, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822158

ABSTRACT

Grapevine production is economically indispensable for the global wine industry. Currently, Mexico cultivates grapevines across approximately 28 500 hectares, ranking as the 26th largest producer worldwide. Given its significance, early detection of plant diseases' causal agents is crucial for preventing outbreaks. Consequently, our study aimed to identify fungal strains in grapevines exhibiting trunk disease symptoms and assess their enzymatic capabilities as indicators of their phytopathogenic potential. We collected plant cultivars, including Malbec, Shiraz, and Tempranillo, from Querétaro, Mexico. In the laboratory, we superficially removed the plant bark to prevent external contamination. Subsequently, the sample was superficially disinfected, and sawdust was generated from the symptomatic tissue. Cultivable fungal strains were isolated using aseptic techniques from the recovered sawdust. Colonies were grown on PDA and identified through a combination of microscopy and DNA-sequencing of the ITS and LSU nrDNA regions, coupled with a BLASTn search in the GenBank database. We evaluated the strains' qualitative ability to degrade cellulose, starch, and lignin using specific media and stains. Using culture morphology and DNA-sequencing, 13 species in seven genera were determined: Acremonium, Aspergillus, Cladosporium, Dydimella, Fusarium, Sarocladium, and Quambalaria. Some isolated strains were able to degrade cellulose or lignin, or starch. These results constitute the first report of these species community in the Americas. Using culture-dependent and DNA-sequencing tools allows the detection of fungal strains to continue monitoring for early prevention of the GTD.


Subject(s)
DNA, Fungal , Fungi , Plant Diseases , Vitis , Vitis/microbiology , Mexico , Plant Diseases/microbiology , DNA, Fungal/genetics , Fungi/genetics , Fungi/isolation & purification , Fungi/classification , Fungi/enzymology , Phylogeny , Sequence Analysis, DNA , Cellulose/metabolism , Lignin/metabolism
4.
Antibiotics (Basel) ; 13(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38391568

ABSTRACT

Chili powder is an important condiment around the world. However, according to various reports, the presence of pathogenic microorganisms could present a public health risk factor during its consumption. Therefore, microbiological quality assessment is required to understand key microbial functional traits, such as antibiotic resistance genes (ARGs). In this study, metagenomic next-generation sequencing (mNGS) and bioinformatics analysis were used to characterize the comprehensive profiles of the bacterial community and antibiotic resistance genes (ARGs) in 15 chili powder samples from different regions of Mexico. The initial bacterial load showed aerobic mesophilic bacteria (AMB) ranging between 6 × 103 and 7 × 108 CFU/g, sporulated mesophilic bacteria (SMB) from 4.3 × 103 to 2 × 109 CFU/g, and enterobacteria (En) from <100 to 2.3 × 106 CFU/g. The most representative families in the samples were Bacillaceae and Enterobacteriaceae, in which 18 potential pathogen-associated species were detected. In total, the resistome profile in the chili powder contained 68 unique genes, which conferred antibiotic resistance distributed in 13 different classes. Among the main classes of antibiotic resistance genes with a high abundance in almost all the samples were those related to multidrug, tetracycline, beta-lactam, aminoglycoside, and phenicol resistance. Our findings reveal the utility of mNGS in elucidating microbiological quality in chili powder to reduce the public health risks and the spread of potential pathogens with antibiotic resistance mechanisms.

5.
Microorganisms ; 11(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37512930

ABSTRACT

Kosakonia cowanii strain Ch1 was isolated from Mexican chili powder, and the genome was sequenced. The genome was 4,765,544 bp in length, with an average G + C content of 56.22%, and a plasmid (pCh1) of 128,063 bp with an average G + C content of 52.50%. A phylogenetic analysis revealed a close relation with pathogenic strains; nevertheless, some virulence-related genes were absent, and this genetic characteristic may explain the fact that K. cowanii Ch1 behaved as a non-pathogenic strain when infection assays were performed on the leaves and fruits of Capsicum annuum L. Surprisingly, we observed that this bacterial strain had the ability to spread throughout serrano pepper seeds. Furthermore, K. cowanii Ch1 was evaluated for the production of volatile organic compounds (VOCs) against fungal pathogens, and the results showed that Alternaria alternata and Sclerotium rolfsii were inhibited in a radial mycelial growth assay by a mean rate of 70% and 64%, while Fusarium oxysporum was inhibited by only approximately 10%. Based on the headspace solid-phase microextraction combined with the gas chromatography mass spectrometry (HS-SPME-GC-MS), 67 potential VOCs were identified during the fermentation of K. cowanii Ch1 in TSA medium. From these VOCs, nine main compounds were identified based on relative peak area: dodecanoic acid; 3-hydroxy ethanol; 1-butanol-3-methyl; acetaldehyde; butanoic acid, butyl ester; cyclodecane; 2-butanone, 3-hydroxy; disulfide, dimethyl and pyrazine-2,5-dimethyl. Our findings show the potential of K. cowanii Ch1 for the biocontrol of fungal pathogens through VOCs production and reveal additional abilities and metabolic features as beneficial bacterial specie.

6.
Microorganisms ; 11(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375088

ABSTRACT

Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation.

7.
Plants (Basel) ; 12(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36771585

ABSTRACT

Plant-associated bacteria in heavy-metal-contaminated environments could be a biotechnological tool to improve plant growth. The present work aimed to isolate lead- and cadmium-tolerant endophytic bacteria from the roots of Typha latifolia growing in a site contaminated with these heavy metals. Endophytic bacteria were characterized according to Pb and Cd tolerance, plant-growth-promoting rhizobacteria activities, and their effect on T. latifolia seedlings exposed and non-exposed to Pb and Cd. Pb-tolerant isolates were identified as Pseudomonas azotoformans JEP3, P. fluorescens JEP8, and P. gessardii JEP33, while Cd-tolerant bacteria were identified as P. veronii JEC8, JEC9, and JEC11. They all exert biochemical activities, including indole acetic acid synthesis, siderophore production, and phosphate solubilization. Plant-bacteria interaction assays showed that P. azotoformans JEP3, P. fluorescens JEP8, P. gessardii JEP33, and P. veronii JEC8, JEC9, JEC11 promote the growth of T. latifolia seedlings by increasing the root and shoot length, while in plants exposed to either 5 mg/L of Pb or 10 mg/L of Cd, all bacterial isolates increased the shoot length and the number of roots per plant, suggesting that they are plant-growth-promoting rhizobacteria that could contribute to T. latifolia adaptation to the heavy metal polluted site.

8.
Microorganisms ; 10(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36363715

ABSTRACT

Phaseolotoxin is a major virulence factor of the bean pathogen bacterium P. savastanoi pv. phaseolicola. This toxin plays a key role in the development of the halo blight disease in bean plants. So far, the signal transduction pathways involved in the synthesis of phaseolotoxin have not been elucidated. The influence of regulation mechanisms related to the oxidative stress response, in particular the OxyR protein, it has been suggested to be involved in this process.. In this study we evaluated the role of OxyR in P. savastanoi pv. phaseolicola, mainly compared to the synthesis of phaseolotoxin and the virulence of this phytopathogen. Generation of the oxyR-mutant, pathogenicity and virulence tests, and analyses of gene expression by RT-PCR assays were performed. The results showed that OxyR exerts an effect on the synthesis of phaseolotoxin and positively influences the expression of the Pht and Pbo cluster genes. Likewise, OxyR influences the production of pyoverdine by the control of the expression of the genes encoding the PvdS sigma factor, involved in the synthesis of this pigment. This study is the first report on members of the OxyR regulon of P. savastanoi pv. phaseolicola NPS3121.

9.
Food Microbiol ; 102: 103926, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34809952

ABSTRACT

A multiplex PCR method was developed for the simultaneous detection of murine norovirus (MNV-1) as a surrogate for human norovirus (HuNoV) GI and GII, Salmonella spp., Shigella spp., and Shiga toxin producing Escherichia coli (STEC) in fresh produce. The toxicity of the glycine buffer on bacterial pathogens viability was evaluated. The growth of each of the three pathogens (previously stressed) was evaluated at 35 and 41.5 °C in modified buffered peptone water (mBPW) and trypticase soy broth (TSB), supplemented with vancomycin, novobiocin and brilliant green at two concentration levels. The selected conditions for simultaneous enrichment were: 41.5 °C/mBPW/supplemented with 8 ppm vancomycin, 0.6 ppm novobiocin and 0.2 ppm brilliant green. The pathogens and aerobic plate count (APC) growth was evaluated in the enrichment of lettuce, coriander, strawberry and blackberry under the best enrichment conditions. Starting from 1 to 10 CFU/mL, Salmonella reached from 7.63 to 8.91, Shigella 6.81 to 7.76 and STEC 7.43 to 9.27 log CFU/mL. The population reached for the APC was 5.11-6.56 log CFU/mL. Simultaneous detection by PCR was done using designed primers targeting invA, ipaH, stx1 and stx2 genes, and MNV-1. The detection sensitivity was 10-100 PFU for the MNV-1 and 1-10 CFU for each pathogenic bacteria. This protocol takes 6 h for MNV-1 and 24 h for Salmonella spp., Shigella spp., and STEC detection from the same food portion. In total, 200 samples were analyzed from retail markets from Queretaro, Mexico. Two strawberry samples were positive for HuNoV GI and one lettuce sample was positive for STEC. In conclusion, the method developed in this study is capable of detecting HuNoV GI and GII, Salmonella spp., Shigella spp and STEC from the same fresh produce sample.


Subject(s)
Coriandrum , Food Contamination/analysis , Food Microbiology/methods , Fragaria , Lactuca , Rubus , Coriandrum/microbiology , Coriandrum/virology , Fragaria/microbiology , Fragaria/virology , Fruit/microbiology , Fruit/virology , Lactuca/microbiology , Lactuca/virology , Multiplex Polymerase Chain Reaction , Norovirus/isolation & purification , Novobiocin , Rubus/microbiology , Rubus/virology , Salmonella/isolation & purification , Shiga-Toxigenic Escherichia coli/isolation & purification , Shigella/isolation & purification , Vancomycin
10.
Braz J Microbiol ; 52(1): 349-361, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33236245

ABSTRACT

In this work, we isolated four Cd-tolerant endophytic bacteria from Typha latifolia roots that grow at a Cd-contaminated site. Bacterial isolates GRC065, GRC066, GRC093, and GRC140 were identified as Pseudomonas rhodesiae. These bacterial isolates tolerate cadmium and have abilities for phosphate solubilization, siderophore production, indole acetic acid (IAA) synthesis, and ACC deaminase activity, suggesting that they are plant growth-promoting rhizobacteria. Bacterial inoculation in Arabidopsis thaliana seedlings showed that P. rhodesiae strains increase total fresh weight and number of lateral roots concerning non-inoculated plants. These results indicated that P. rhodesiae strains promote A. thaliana seedlings growth by modifying the root system. On the other hand, in A. thaliana seedlings exposed to 2.5 mg/l of Cd, P. rhodesiae strains increased the number and density of lateral roots concerning non-inoculated plants, indicating that they modify the root architecture of A. thaliana seedlings exposed to cadmium. The results showed that P. rhodesiae strains promote the development of lateral roots in A. thaliana seedlings cultivated in both conditions, with and without cadmium. These results suggest that P. rhodesiae strains could exert a similar role inside the roots of T. latifolia that grow in the Cd-contaminated environment.


Subject(s)
Arabidopsis/microbiology , Cadmium/metabolism , Cadmium/pharmacology , Plant Roots/microbiology , Pseudomonas/genetics , Pseudomonas/metabolism , Biodegradation, Environmental , Endophytes/genetics , Endophytes/metabolism , Phosphates/metabolism , Plant Development , Plant Roots/drug effects , Pseudomonas/drug effects , Pseudomonas/isolation & purification , Seedlings/drug effects , Seedlings/microbiology , Soil Pollutants , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL