Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Emerg Physicians Open ; 5(3): e13192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887225

ABSTRACT

Objectives: Patients hospitalized for COVID-19 frequently develop hypoxemia and acute respiratory distress syndrome (ARDS) after admission. In non-COVID-19 ARDS studies, admission to hospital wards with subsequent transfer to intensive care unit (ICU) is associated with worse outcomes. We hypothesized that initial admission to the ward may affect outcomes in patient with COVID-19 ARDS. Methods: This was a retrospective study of consecutive adults admitted for COVID-19 ARDS between March 2020 and March 2021 at Stanford Health Care. Mortality scores at hospital admission (Coronavirus Clinical Characterization Consortium Mortality Score [4C score]) and ICU admission (Simplified Acute Physiology Score III [SAPS-III]) were calculated, as well as ROX index for patients on high flow nasal oxygen. Patients were classified by emergency department (ED) disposition (ward-first vs. ICU-direct), and 28- and 60-day mortality and highest level of respiratory support within 1 day of ICU admission were compared. A second cohort (April 2021‒July 2022, n = 129) was phenotyped to validate mortality outcome. Results: A total of 157 patients were included, 48% of whom were first admitted to the ward (n = 75). Ward-first patients had more comorbidities, including lung disease. Ward-first patients had lower 4C and similar SAPS-III score, yet increased mortality at 28 days (32% vs. 17%, hazard ratio [HR] 2.0, 95% confidence interval [95% CI] 1.0‒3.7, p = 0.039) and 60 days (39% vs. 23%, HR 1.83, 95% CI 1.04‒3.22, p = 0.037) compared to ICU-direct patients. More ward-first patients escalated to mechanical ventilation on day 1 of ICU admission (36% vs. 14%, p = 0.002) despite similar ROX index. Ward-first patients who upgraded to ICU within 48 h of ED presentation had the highest mortality. Mortality findings were replicated in a sensitivity analysis. Conclusion: Despite similar baseline risk scores, ward-first patients with COVID-19 ARDS had increased mortality and escalation to mechanical ventilation compared to ICU-direct patients. Ward-first patients requiring ICU upgrade within 48 h were at highest risk, highlighting a need for improved identification of this group at ED admission.

2.
Handb Exp Pharmacol ; 277: 367-384, 2023.
Article in English | MEDLINE | ID: mdl-36376705

ABSTRACT

Critical illness is associated with dramatic changes in metabolism driven by immune, endocrine, and adrenergic mediators. These changes involve early activation of catabolic processes leading to increased energetic substrate availability; later on, they are followed by a hypometabolic phase characterized by deranged mitochondrial function. In sepsis and ARDS, these rapid clinical changes are reflected in metabolomic profiles of plasma and other fluids, suggesting that metabolomics could one day be used to assist in the diagnosis and prognostication of these syndromes. Some metabolites, such as lactate, are already in clinical use and define patients with septic shock, a high-mortality subtype of sepsis. Larger-scale metabolomic profiling may ultimately offer a tool to identify subgroups of critically ill patients who may respond to therapy, but further work is needed before this type of precision medicine is readily employed in the clinical setting.


Subject(s)
Sepsis , Shock, Septic , Humans , Critical Illness , Sepsis/diagnosis , Sepsis/therapy , Metabolomics
3.
JCI Insight ; 7(12)2022 06 22.
Article in English | MEDLINE | ID: mdl-35730564

ABSTRACT

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e., resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percentages of solids and protein content were greatly elevated in COVID-19 compared with heathy control samples and closely resembled levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) were major components of respiratory secretions in COVID-19 and were likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors, with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observed increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factor-stimulated gene-6 staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicated that increases in HA and DNA in COVID-19 respiratory secretion samples correlated with enhanced inflammatory burden and suggested that DNA and HA may be viable therapeutic targets in COVID-19 infection.


Subject(s)
COVID-19 , Interferon Type I , Humans , Lung , SARS-CoV-2 , Sputum
4.
J Clin Invest ; 132(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35499083

ABSTRACT

BACKGROUNDHyaluronan (HA), an extracellular matrix glycosaminoglycan, has been implicated in the pathophysiology of COVID-19 infection, pulmonary hypertension, pulmonary fibrosis, and other diseases, but is not targeted by any approved drugs. We asked whether hymecromone (4-methylumbelliferone [4-MU]), an oral drug approved in Europe for biliary spasm treatment that also inhibits HA in vitro and in animal models, could be repurposed as an inhibitor of HA synthesis in humans.METHODSWe conducted an open-label, single-center, dose-response study of hymecromone in healthy adults. Subjects received hymecromone at 1200 (n = 8), 2400 (n = 9), or 3600 (n = 9) mg/d divided into 3 doses daily, administered orally for 4 days. We assessed safety and tolerability of hymecromone and analyzed HA, 4-MU, and 4-methylumbelliferyl glucuronide (4-MUG; the main metabolite of 4-MU) concentrations in sputum and serum.RESULTSHymecromone was well tolerated up to doses of 3600 mg/d. Both sputum and serum drug concentrations increased in a dose-dependent manner, indicating that higher doses lead to greater exposures. Across all dose arms combined, we observed a significant decrease in sputum HA from baseline after 4 days of treatment. We also observed a decrease in serum HA. Additionally, higher baseline sputum HA levels were associated with a greater decrease in sputum HA.CONCLUSIONAfter 4 days of exposure to oral hymecromone, healthy human subjects experienced a significant reduction in sputum HA levels, indicating this oral therapy may have potential in pulmonary diseases where HA is implicated in pathogenesis.TRIAL REGISTRATIONClinicalTrials.gov NCT02780752.FUNDINGStanford Medicine Catalyst, Stanford SPARK, Stanford Innovative Medicines Accelerator program, NIH training grants 5T32AI052073-14 and T32HL129970.


Subject(s)
Hyaluronic Acid , Hymecromone , Administration, Oral , COVID-19 , Europe , Extracellular Matrix/metabolism , Humans , Hyaluronic Acid/metabolism , Hymecromone/administration & dosage , Hymecromone/adverse effects
5.
medRxiv ; 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35411348

ABSTRACT

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We find the percent solids and protein content are greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibit heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observe increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factorâ€"stimulated gene-6 (TSG6) staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicate that increases in HA and DNA in COVID-19 respiratory secretion samples correlate with enhanced inflammatory burden and suggest that DNA and HA may be viable therapeutic targets in COVID-19 infection.

6.
medRxiv ; 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-32935110

ABSTRACT

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19 disease, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e. resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percent solids and protein content are all greatly elevated in COVID-19 compared to heathy control samples and closely resemble levels seen in cystic fibrosis (CF), a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan are major components of respiratory secretions in COVID-19 and are likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. These results highlight the dramatic biophysical properties of COVID-19 respiratory secretions and suggest that DNA and hyaluronan may be viable therapeutic targets in COVID-19 infection.

SELECTION OF CITATIONS
SEARCH DETAIL