Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Front Mol Biosci ; 11: 1354076, 2024.
Article in English | MEDLINE | ID: mdl-38584702

ABSTRACT

Fibroblasts are versatile cells that play a major role in wound healing by synthesizing and remodeling the extracellular matrix (ECM). In cancers, fibroblasts play an expanded role in tumor progression and dissemination, immunosuppression, and metabolic support of cancer cells. In prostate cancer (PCa), fibroblasts have been shown to induce growth and increase metastatic potential. To further understand differences in the functions of human PCa associated fibroblasts (PCAFs) compared to normal prostate fibroblasts (PFs), we investigated the metabolic profile and ECM degradation characteristics of PFs and PCAFs using a magnetic resonance imaging and spectroscopy compatible intact cell perfusion assay. To further understand how PFs and PCAFs respond to hypoxic tumor microenvironments that are often observed in PCa, we characterized the effects of hypoxia on PF and PCAF metabolism, invasion and PD-L1 expression. We found that under normoxia, PCAFs displayed decreased ECM degradation compared to PFs. Under hypoxia, ECM degradation by PFs increased, whereas PCAFs exhibited decreased ECM degradation. Under both normoxia and hypoxia, PCAFs and PFs showed significantly different metabolic profiles. PD-L1 expression was intrinsically higher in PCAFs compared to PFs. Under hypoxia, PD-L1 expression increased in PCAFs but not in PFs. Our data suggest that PCAFs may not directly induce ECM degradation to assist in tumor dissemination, but may instead create an immune suppressive tumor microenvironment that further increases under hypoxic conditions. Our data identify the intrinsic metabolic, ECM degradation and PD-L1 expression differences between PCAFs and PFs under normoxia and hypoxia that may provide novel targets in PCa treatment.

2.
NMR Biomed ; : e5157, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589764

ABSTRACT

Cellular senescence is characterized by stable cell cycle arrest. Senescent cells exhibit a senescence-associated secretory phenotype that can promote tumor progression. The aim of our study was to identify specific nuclear magnetic resonance (NMR) spectroscopy-based markers of cancer cell senescence. For metabolic studies, we employed murine liver carcinoma Harvey Rat Sarcoma Virus (H-Ras) cells, in which reactivation of p53 expression induces senescence. Senescent and nonsenescent cell extracts were subjected to high-resolution proton (1H)-NMR spectroscopy-based metabolomics, and dynamic metabolic changes during senescence were analyzed using a magnetic resonance spectroscopy (MRS)-compatible cell perfusion system. Additionally, the ability of intact senescent cells to degrade the extracellular matrix (ECM) was quantified in the cell perfusion system. Analysis of senescent H-Ras cell extracts revealed elevated sn-glycero-3-phosphocholine, myoinositol, taurine, and creatine levels, with decreases in glycine, o-phosphocholine, threonine, and valine. These metabolic findings were accompanied by a greater degradation index of the ECM in senescent H-Ras cells than in control H-Ras cells. MRS studies with the cell perfusion system revealed elevated creatine levels in senescent cells on Day 4, confirming the 1H-NMR results. These senescence-associated changes in metabolism and ECM degradation strongly impact growth and redox metabolism and reveal potential MRS signals for detecting senescent cancer cells in vivo.

4.
Bioeng Transl Med ; 7(2): e10266, 2022 May.
Article in English | MEDLINE | ID: mdl-35600657

ABSTRACT

Partial and/or heterogeneous irradiation of established (i.e., large, vascularized) tumors by α-particles that exhibit only a 4-5 cell-diameter range in tissue, limits the therapeutic effect, since regions not being hit by the high energy α-particles are likely not to be killed. This study aims to mechanistically understand a delivery strategy to uniformly distribute α-particles within established solid tumors by simultaneously delivering the same α-particle emitter by two diverse carriers, each killing a different region of the tumor: (1) the cancer-agnostic, but also tumor-responsive, liposomes engineered to best irradiate tumor regions far from the vasculature, and (2) a separately administered, antibody, targeting any cancer-cell's surface marker, to best irradiate the tumor perivascular regions. We demonstrate that on a prostate specific membrane antigen (PSMA)-expressing prostate cancer xenograft mouse model, for the same total injected radioactivity of the α-particle emitter Actinium-225, any radioactivity split ratio between the two carriers resulted in better tumor growth inhibition compared to the tumor inhibition when the total radioactivity was delivered by any of the two carriers alone. This finding was due to more uniform tumor irradiation for the same total injected radioactivity. The killing efficacy was improved even though the tumor-absorbed dose delivered by the combined carriers was lower than the tumor-absorbed dose delivered by the antibody alone. Studies on spheroids with different receptor-expression, used as surrogates of the tumors' avascular regions, demonstrated that our delivery strategy is valid even for as low as 1+ (ImmunoHistoChemistry score) PSMA-levels. The findings presented herein may hold clinical promise for those established tumors not being effectively eradicated by current α-particle radiotherapies.

5.
J Nucl Med ; 63(8): 1223-1230, 2022 08.
Article in English | MEDLINE | ID: mdl-34795012

ABSTRACT

α-particle radiotherapy has already been shown to be impervious to most resistance mechanisms. However, in established (i.e., large, vascularized) soft-tissue lesions, the diffusion-limited penetration depths of radiolabeled antibodies or nanocarriers (≤50-80 µm) combined with the short range of α-particles (4-5 cell diameters) may result in only partial tumor irradiation, potentially limiting treatment efficacy. To address this challenge, we combined carriers with complementary intratumoral microdistributions of the delivered α-particles. We used the α-particle generator 225Ac, and we combined a tumor-responsive liposome (which, on tumor uptake, releases into the interstitium a highly diffusing form of its radioactive payload [225Ac-DOTA], potentially penetrating the deeper parts of tumors where antibodies do not reach) with a separately administered, less-penetrating radiolabeled antibody (irradiating the tumor perivascular regions where liposome contents clear too quickly). Methods: In a murine model with orthotopic human epidermal growth factor receptor 2-positive BT474 breast cancer xenografts, the biodistributions of each carrier were evaluated, and the control of tumor growth was monitored after administration of the same total radioactivity of 225Ac delivered by the 225Ac-DOTA-encapsulating liposomes, by the 225Ac-DOTA-SCN--labeled trastuzumab, and by both carriers at equally split radioactivities. Results: Tumor growth was significantly more inhibited when the same total injected radioactivity was divided between the 2 separate carriers than when delivered by either of the carriers alone. The combined carriers enabled more uniform intratumoral microdistributions of α-particles, at a tumor dose that was lower than the dose delivered by the antibody alone. Conclusion: This strategy demonstrates that more uniform microdistributions of the delivered α-particles within established solid tumors improve efficacy even at lower tumor doses. Augmentation of antibody-targeted α-particle therapies with tumor-responsive liposomes may address partial tumor irradiation, improving therapeutic effects.


Subject(s)
Actinium , Liposomes , Actinium/therapeutic use , Alpha Particles/therapeutic use , Animals , Antibodies , Cell Line, Tumor , Humans , Mice , Radioimmunotherapy
6.
Eur J Nucl Med Mol Imaging ; 48(13): 4246-4258, 2021 12.
Article in English | MEDLINE | ID: mdl-34117896

ABSTRACT

PURPOSE: Highly cytotoxic α-particle radiotherapy delivered by tumor-selective nanocarriers is evaluated on metastatic Triple Negative Breast Cancer (TNBC). On vascularized tumors, the limited penetration of nanocarriers (<50-80 µm) combined with the short range of α-particles (40-100 µm) may, however, result in only partial tumor irradiation, compromising efficacy. Utilizing the α-particle emitter Actinium-225 (225Ac), we studied how the therapeutic potential of a general delivery strategy using nanometer-sized engineered liposomes was affected by two key transport-driven properties: (1) the release from liposomes, when in the tumor interstitium, of the highly diffusing 225Ac-DOTA that improves the uniformity of tumor irradiation by α-particles and (2) the adhesion of liposomes on the tumors' ECM that increases liposomes' time-integrated concentrations within tumors and, therefore, the tumor-delivered radioactivities. METHODS: On an orthotopic MDA-MB-231 TNBC murine model forming spontaneous metastases, we evaluated the maximum tolerated dose (MTD), biodistributions, and control of tumor growth and/or spreading after administration of 225Ac-DOTA-encapsulating liposomes, with different combinations of the two transport-driven properties. RESULTS: At 83% of MTD, 225Ac-DOTA-encapsulating liposomes with both properties (1) eliminated formation of spontaneous metastases and (2) best inhibited the progression of orthotopic xenografts, compared to liposomes lacking one or both properties. These findings were primarily affected by the extent of uniformity of the intratumoral microdistributions of 225Ac followed by the overall tumor uptake of radioactivity. At the MTD, long-term toxicities were not detected 9.5 months post administration. CONCLUSION: Our findings demonstrate the potential of a general, transport-driven strategy enabling more uniform and prolonged solid tumor irradiation by α-particles without cell-specific targeting.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Alpha Particles/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Humans , Liposomes , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/radiotherapy
7.
Cancer Metab ; 9(1): 10, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33608051

ABSTRACT

BACKGROUND: Harnessing the power of the immune system by using immune checkpoint inhibitors has resulted in some of the most exciting advances in cancer treatment. The full potential of this approach has, however, not been fully realized for treating many cancers such as pancreatic and breast cancer. Cancer metabolism influences many aspects of cancer progression including immune surveillance. An expanded understanding of how cancer metabolism can directly impact immune checkpoints may allow further optimization of immunotherapy. We therefore investigated, for the first time, the relationship between the overexpression of choline kinase-α (Chk-α), an enzyme observed in most cancers, and the expression of the immune checkpoint PD-L1. METHODS: We used small interfering RNA to downregulate Chk-α, PD-L1, or both in two triple-negative human breast cancer cell lines (MDA-MB-231 and SUM-149) and two human pancreatic ductal adenocarcinoma cell lines (Pa09C and Pa20C). The effects of the downregulation were studied at the genomic, proteomic, and metabolomic levels. The findings were compared with the results obtained by the analysis of public data from The Cancer Genome Atlas Program. RESULTS: We identified an inverse dependence between Chk-α and PD-L1 at the genomic, proteomic, and metabolomic levels. We also found that prostaglandin-endoperoxide synthase 2 (COX-2) and transforming growth factor beta (TGF-ß) play an important role in this relationship. We independently confirmed this relationship in human cancers by analyzing data from The Cancer Genome Atlas Program. CONCLUSIONS: Our data identified previously unknown roles of PD-L1 in cancer cell metabolic reprogramming, and revealed the immunosuppressive increased PD-L1 effect of Chk-α downregulation. These data suggest that PD-L1 regulation of metabolism may be mediated through Chk-α, COX-2, and TGF-ß. The observations provide new insights that can be applied to the rational design of combinatorial therapies targeting immune checkpoints and cancer metabolism.

8.
Front Neuroanat ; 14: 33, 2020.
Article in English | MEDLINE | ID: mdl-32676012

ABSTRACT

Magnetic resonance imaging (MRI) data of children with late diagnosed congenital hypothyroidism and cognitive alterations such as abnormal verbal memory processing suggest altered telencephalic commissural connections. The corpus callosum (CC) is the major inter-hemispheric commissure that contra-laterally connects neocortical areas. However, in late diagnosed neonates with congenital hypothyroidism, the possible effect of early transient and chronic postnatal hypothyroidism still remains unknown. We have studied the development of the anterior, middle and posterior CC, using in vivo MRI and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group, as a model for early transient hypothyroidism, was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to 21. Another group modeling chronic hypothyroid, were treated with MMI from P0 to 150 and from embryonic day 10 to P170. The results obtained from these groups were compared with same age control rats. The normalized T2 signal obtained using MRI was higher in MMI-treated rats and correlated with a low number and percentage of myelinated axons. The number and density of myelinated axons decreased in transient and chronic hypothyroid rats at P150. The g-ratio (inner to outer diameter ratio) and the estimated conduction velocity of myelinated axons were similar between MMI-treated and controls, but the conduction delay decreased in the posterior CC of MMI-treated rats compared to controls. These data show that early postnatal transient and chronic hypothyroidism alters CC maturation in a way that may affect the callosal transfer of information. These alterations cannot be reversed after delayed T4-treatment. Our data support the findings of neurocognitive delay in late T4-treated children with congenital hypothyroidism.

9.
Top Curr Chem (Cham) ; 378(1): 15, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31938922

ABSTRACT

Nowadays, biomaterials have become a crucial element in numerous biomedical, preclinical, and clinical applications. The use of nanoparticles entails a great potential in these fields mainly because of the high ratio of surface atoms that modify the physicochemical properties and increases the chemical reactivity. Among them, carbon nanotubes (CNTs) have emerged as a powerful tool to improve biomedical approaches in the management of numerous diseases. CNTs have an excellent ability to penetrate cell membranes, and the sp2 hybridization of all carbons enables their functionalization with almost every biomolecule or compound, allowing them to target cells and deliver drugs under the appropriate environmental stimuli. Besides, in the new promising field of artificial biomaterial generation, nanotubes are studied as the load in nanocomposite materials, improving their mechanical and electrical properties, or even for direct use as scaffolds in body tissue manufacturing. Nevertheless, despite their beneficial contributions, some major concerns need to be solved to boost the clinical development of CNTs, including poor solubility in water, low biodegradability and dispersivity, and toxicity problems associated with CNTs' interaction with biomolecules in tissues and organs, including the possible effects in the proteome and genome. This review performs a wide literature analysis to present the main and latest advances in the optimal design and characterization of carbon nanotubes with biomedical applications, and their capacities in different areas of preclinical research.


Subject(s)
Nanomedicine/methods , Nanotechnology/methods , Nanotubes, Carbon/analysis , Animals , Humans , Models, Molecular , Nanotubes, Carbon/toxicity , Nanotubes, Carbon/ultrastructure
10.
Front Oncol ; 10: 614365, 2020.
Article in English | MEDLINE | ID: mdl-33718115

ABSTRACT

PURPOSE: The inhibition of immune checkpoints such as programmed cell death ligand-1 (PD-L1/CD274) with antibodies is providing novel opportunities to expose cancer cells to the immune system. Antibody based checkpoint blockade can, however, result in serious autoimmune complications because normal tissues also express immune checkpoints. As sequence-specific gene-silencing agents, the availability of siRNA has significantly expanded the specificity and range of "druggable" targets making them promising agents for precision medicine in cancer. Here, we have demonstrated the ability of a novel biodegradable dextran based theranostic nanoparticle (NP) to deliver siRNA downregulating PD-L1 in tumors. Optical imaging highlighted the importance of NP delivery and accumulation in tumors to achieve effective downregulation with siRNA NPs, and demonstrated low delivery and accumulation in several PD-L1 expressing normal tissues. METHODS: The dextran scaffold was functionalized with small molecules containing amine groups through acetal bonds. The NP was decorated with a Cy5.5 NIR probe allowing visualization of NP delivery, accumulation, and biodistribution. MDA-MB-231 triple negative human breast cancer cells were inoculated orthotopically or subcutaneously to achieve differences in vascular delivery in the tumors. Molecular characterization of PD-L1 mRNA and protein expression in cancer cells and tumors was performed with qRT-PCR and immunoblot analysis. RESULTS: The PD-L1 siRNA dextran NPs effectively downregulated PD-L1 in MDA-MB-231 cells. We identified a significant correlation between NP delivery and accumulation, and the extent of PD-L1 downregulation, with in vivo imaging. The size of the NP of ~ 20 nm allowed delivery through leaky tumor vasculature but not through the vasculature of high PD-L1 expressing normal tissue such as the spleen and lungs. CONCLUSIONS: Here we have demonstrated, for the first time, the feasibility of downregulating PD-L1 in tumors using siRNA delivered with a biodegradable dextran polymer that was decorated with an imaging reporter. Our data demonstrate the importance of tumor NP delivery and accumulation in achieving effective downregulation, highlighting the importance of imaging in siRNA NP delivery. Effective delivery of these siRNA carrying NPs in the tumor but not in normal tissues may mitigate some of the side-effects of immune checkpoint inhibitors by sparing PD-L1 inhibition in these tissues.

11.
Cancer Metastasis Rev ; 38(1-2): 51-64, 2019 06.
Article in English | MEDLINE | ID: mdl-30840168

ABSTRACT

Hypoxia in cancers has evoked significant interest since 1955 when Thomlinson and Gray postulated the presence of hypoxia in human lung cancers, based on the observation of necrosis occurring at the diffusion limit of oxygen from the nearest blood vessel, and identified the implication of these observations for radiation therapy. Coupled with discoveries in 1953 by Gray and others that anoxic cells were resistant to radiation damage, these observations have led to an entire field of research focused on exploiting oxygenation and hypoxia to improve the outcome of radiation therapy. Almost 65 years later, tumor heterogeneity of nearly every parameter measured including tumor oxygenation, and the dynamic landscape of cancers and their microenvironments are clearly evident, providing a strong rationale for cancer personalized medicine. Since hypoxia is a major cause of extracellular acidosis in tumors, here, we have focused on the applications of imaging to understand the effects of hypoxia in tumors and to target hypoxia in theranostic strategies. Molecular and functional imaging have critically important roles to play in personalized medicine through the detection of hypoxia, both spatially and temporally, and by providing new understanding of the role of hypoxia in cancer aggressiveness. With the discovery of the hypoxia-inducible factor (HIF), the intervening years have also seen significant progress in understanding the transcriptional regulation of hypoxia-induced genes. These advances have provided the ability to silence HIF and understand the associated molecular and functional consequences to expand our understanding of hypoxia and its role in cancer aggressiveness. Most recently, the development of hypoxia-based theranostic strategies that combine detection and therapy are further establishing imaging-based treatment strategies for precision medicine of cancer.


Subject(s)
Neoplasms/diagnostic imaging , Neoplasms/metabolism , Tumor Hypoxia/physiology , Animals , Humans , Magnetic Resonance Imaging , Neoplasm Metastasis , Neoplasms/blood supply , Positron-Emission Tomography
12.
NMR Biomed ; 32(10): e4053, 2019 10.
Article in English | MEDLINE | ID: mdl-30693605

ABSTRACT

Because of the spatial and temporal heterogeneities of cancers, technologies to investigate cancer cells and the consequences of their interactions with abnormal physiological environments, such as hypoxia and acidic extracellular pH, with stromal cells, and with the extracellular matrix, under controlled conditions, are valuable to gain insights into the functioning of cancers. These insights can lead to an understanding of why cancers invade and metastasize, and identify effective treatment strategies. Here we have provided an overview of the applications of MRI/MRS/MRSI to investigate intact perfused cancer cells, their metabolism and invasion, and their interactions with stromal cells and the extracellular matrix.


Subject(s)
Cell Communication , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Neoplasms/metabolism , Neoplasms/pathology , Perfusion , Humans , Neoplasm Invasiveness , Stromal Cells/pathology
13.
Magn Reson Imaging ; 58: 67-75, 2019 05.
Article in English | MEDLINE | ID: mdl-30660705

ABSTRACT

INTRODUCTION: Functional magnetic resonance imaging (fMRI) is one of the most highly regarded techniques in the neuroimaging field. This technique is based on vascular responses to neuronal activation and is extensively used in clinical and animal research studies. In preclinical settings, fMRI is usually applied to anesthetized animals. However, anesthetics cause alterations, e.g. hypothermia, in the physiology of the animals and this has the potential to disrupt fMRI signals. The current temperature control method involves a technician, as well as monitoring the acquisition MRI sequences, also controlling the temperature of the animal; this is inefficient. METHODS: In order to avoid hypothermia in anesthetized rodents an Open-Source automatic temperature control device is presented. It takes signals from an intrarectal temperature sensor, as well as signals from a thermal bath, which warms up the body of the animal under study, in order to determine the mathematical model of the thermal response of the animal. RESULTS: A Proportional-Integral-Derivative (PID) algorithm, which was discretized in an Arduino microcontroller, was developed to automatically keep stable the body temperature of the animal under study. The PID algorithm has been shown to be accurate in preserving the body temperature of the animal. CONCLUSION: This work presents the TherMouseDuino. It is an Open-Source automatic temperature control system and reduces temperature fluctuations, thus providing robust conditions in which to perform fMRI experiments. Furthermore, our device frees up the technician to focus solely on monitoring the MRI sequences.


Subject(s)
Equipment Design , Hypothermia, Induced , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Algorithms , Animals , Body Temperature , Computers , Hot Temperature , Mice , Models, Theoretical , Neuroimaging/instrumentation , Neuroimaging/methods , Neurons
14.
Br J Cancer ; 119(5): 622-630, 2018 08.
Article in English | MEDLINE | ID: mdl-30206370

ABSTRACT

BACKGROUND: Tumour carbonic anhydrase IX (CAIX), a hypoxia-inducible tumour-associated cell surface enzyme, is thought to acidify the tumour microenvironment by hydrating CO2 to form protons and bicarbonate, but there is no definitive evidence for this in solid tumours in vivo. METHODS: We used 1H magnetic resonance spectroscopic imaging (MRSI) of the extracellular pH probe imidazolyl succinic acid (ISUCA) to measure and spatially map extracellular pH in HCT116 tumours transfected to express CAIX and empty vector controls in SCID mice. We also measured intracellular pH in situ with 31P MRS and measured lactate in freeze-clamped tumours. RESULTS: CAIX-expressing tumours had 0.15 pH-unit lower median extracellular pH than control tumours (pH 6.71 tumour vs pH 6.86 control, P = 0.01). Importantly, CAIX expression imposed an upper limit for tumour extracellular pH at 6.93. Despite the increased lactate concentration in CAIX-expressing tumours, 31P MRS showed no difference in intracellular pH, suggesting that CAIX acidifies only the tumour extracellular space. CONCLUSIONS: CAIX acidifies the tumour microenvironment, and also provides an extracellular pH control mechanism. We propose that CAIX thus acts as an extracellular pH-stat, maintaining an acidic tumour extracellular pH that is tolerated by cancer cells and favours invasion and metastasis.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase IX/metabolism , Colorectal Neoplasms/pathology , Lactic Acid/analysis , Animals , Cell Hypoxia , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , HCT116 Cells , Humans , Imidazoles/chemistry , Mice , Neoplasm Transplantation , Proton Magnetic Resonance Spectroscopy , Tumor Microenvironment
15.
Front Neuroanat ; 12: 31, 2018.
Article in English | MEDLINE | ID: mdl-29755326

ABSTRACT

Thyroid hormone deficiency at early postnatal ages affects the cytoarchitecture and function of neocortical and telencephalic limbic areas, leading to impaired associative memory and in a wide spectrum of neurological and mental diseases. Neocortical areas project interhemispheric axons mostly through the corpus callosum and to a lesser extent through the anterior commissure (AC), while limbic areas mostly project through the AC and hippocampal commissures. Functional magnetic resonance data from children with late diagnosed congenital hypothyroidism and abnormal verbal memory processing, suggest altered ipsilateral and contralateral telencephalic connections. Gestational hypothyroidism affects AC development but the possible effect of transient and chronic postnatal hypothyroidism, as occurs in late diagnosed neonates with congenital hypothyroidism and in children growing up in iodine deficient areas, still remains unknown. We studied AC development using in vivo magnetic resonance imaging and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to P21, as a model for early transient hypothyroidism. Other rats were MMI-treated from P0 to P150 and from embryonic day (E) 10 to P170, as a chronic hypothyroidism group. The results were compared with age paired control rats. The normalized T2 signal using magnetic resonance image was higher in MMI-treated rats and correlated with the number and percentage of myelinated axons. Using electron microscopy, we observed decreased myelinated axon number and density in transient and chronic hypothyroid rats at P150, unmyelinated axon number increased slightly in chronic hypothyroid rats. In MMI-treated rats, the myelinated axon g-ratio and conduction velocity was similar to control rats, but with a decrease in conduction delays. These data show that early postnatal transient and chronic hypothyroidism alters AC maturation that may affect the transfer of information through the AC. The alterations cannot be recovered after delayed T4-treatment. Our data support the neurocognitive delay found in late T4-treated children with congenital hypothyroidism.

16.
Nanoscale ; 10(14): 6349-6360, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29560985

ABSTRACT

The development of contrast agents (CAs) for Magnetic Resonance Imaging (MRI) with T1-T2 dual-mode relaxivity requires the accurate assembly of T1 and T2 magnetic centers in a single structure. In this context, we have synthesized a novel hybrid material by monitoring the formation of Prussian Blue analogue Gd(H2O)4[Fe(CN)6] nanoparticles with tailored shape (from nanocrosses to nanorods) and size, and further protection with a thin and homogeneous silica coating through hydrolysis and polymerization of silicate at neutral pH. The resulting Gd(H2O)4[Fe(CN)6]@SiO2 magnetic nanoparticles are very stable in biological fluids. Interestingly, this combination of Gd and Fe magnetic centers closely packed in the crystalline network promotes a magnetic synergistic effect, which results in significant improvement of longitudinal relaxivity with regards to soluble Gd3+ chelates, whilst keeping the high transversal relaxivity inherent to the iron component. As a consequence, this material shows excellent activity as MRI CA, improving positive and negative contrasts in T1- and T2-weighted MR images, both in in vitro (e.g., phantom) and in vivo (e.g., Sprague-Dawley rats) models. In addition, this hybrid shows a high biosafety profile and has strong ability to incorporate organic molecules on the surface with variable functionality, displaying great potential for further clinical application.

17.
Methods Mol Biol ; 1718: 117-134, 2018.
Article in English | MEDLINE | ID: mdl-29341006

ABSTRACT

Since its discovery in the early 90s, BOLD signal-based functional Magnetic Resonance Imaging (fMRI) has become a fundamental technique for the study of brain activity in basic and clinical research. Functional MRI signals provide an indirect but robust and quantitative readout of brain activity through the tight coupling between cerebral blood flow and neuronal activation, the so-called neurovascular coupling. Combined with experimental techniques only available in animal models, such as intracerebral micro-stimulation, optogenetics or pharmacogenetics, provides a powerful framework to investigate the impact of specific circuit manipulations on overall brain dynamics. The purpose of this chapter is to provide a comprehensive protocol to measure brain activity using fMRI with intracerebral electric micro-stimulation in murine models. Preclinical research (especially in rodents) opens the door to very sophisticated and informative experiments, but at the same time imposes important constrains (i.e., anesthetics, translatability), some of which will be addressed here.


Subject(s)
Brain Mapping/methods , Brain/blood supply , Brain/physiology , Electric Stimulation , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neurons/physiology , Animals , Cerebrovascular Circulation , Functional Neuroimaging , Neurovascular Coupling , Oxygen/metabolism , Rodentia
18.
Methods Mol Biol ; 1718: 297-313, 2018.
Article in English | MEDLINE | ID: mdl-29341016

ABSTRACT

Oxygen monitoring is a topic of exhaustive research due to its central role in many biological processes, from energy metabolism to gene regulation. The ability to monitor in vivo the physiological distribution and the dynamics of oxygen from subcellular to macroscopic levels is a prerequisite to better understand the mechanisms associated with both normal and disease states (cancer, neurodegeneration, stroke, etc.). This chapter focuses on magnetic resonance imaging (MRI) based techniques to assess oxygenation in vivo. The first methodology uses injected fluorinated agents to provide quantitative pO2 measurements with high precision and suitable spatial and temporal resolution for many applications. The second method exploits changes in endogenous contrasts, i.e., deoxyhemoglobin and oxygen molecules through measurements of T 2* and T 1, in response to an intervention to qualitatively evaluate hypoxia and its potential modulation.


Subject(s)
Hemoglobins/metabolism , Hypoxia/physiopathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Monitoring, Physiologic , Oxygen/metabolism , Animals , Humans
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 533-536, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29059927

ABSTRACT

The use of functional magnetic resonance imaging (fMRI) to measure spontaneous fluctuations in blood oxygen level dependent (BOLD) signals has become an indispensable tool to investigate how brain regions interact and form long-range networks. Statistical dependency measures between brain regions obtained from BOLD signals can inform about brain functional states in longitudinal studies of neurological and psychiatric disorders. Furthermore, its non-invasive nature allows comparable measurements in clinical and animal studies, providing excellent translational capabilities. In the present study, we apply Network-Based Statistic (NBS) to investigate alterations in the functional connectivity (FC) of the rat brain in a post-dependent (PD) state, an established animal model of clinical relevant features in alcoholism. In contrast to mass-univariate tests, in which comparisons are performed at single link-level, NBS enhances the statistical power by assuming that the connections comprising the effect of interest are interconnected. Brain-wide resting-state fMRI signals were collected in 14 controls and 13 PD rats, and Pearson correlations computed between 47 brain regions of interest (ROIs). The NBS analysis revealed statistically significant differences in a connected network of structures including hippocampus, amygdala, lateral hypothalamus and the raphe nucleus, all regions with known relevance for addictive behaviors. In contrast, no individual connection could be found significant by univariate comparisons with false discovery rate (FDR) correction. Correlations between the structures in the identified subnetwork tend to decrease or become negative (anti-correlated) in the PD state compared to controls. We interpret this result as evidence for a disconnected subnetwork in the PD state.


Subject(s)
Brain , Alcoholism , Animals , Brain Mapping , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...