Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters










Publication year range
1.
Vet Q ; 44(1): 1-8, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39118475

ABSTRACT

Hemp (Cannabis sativa L.) is an annual plant belonging to the family of Cannabaceae with several varieties characterized by different fatty acid profile, content in flavonoids, polyphenols, and cannabinoid compounds. Hemp is mostly used in livestock nutrition as oil or as protein cake, but not as inflorescences. The aim of this study was to evaluate the effect of dietary hemp inflorescences on milk yield and composition in grazing dairy goats. Twenty Camosciata delle Alpi goats at their 3rd parity and with a mean body weight of 45.2 ± 2.0 kg, immediately after kidding, were equally allocated into two groups (G: Grazing and GH: grazing and hemp). For three months, all goats were fed on a permanent pasture and received 700/head/day of concentrate; diet of group GH was supplemented with 20 g/head/day of hemp inflorescences. Goats' body weight did not change during the trial. Individual milk yield was daily recorded and samples collected every 20 days for chemical composition and fatty acid profile analysis. No significant differences were found for milk yield and chemical composition. Caproic (C6:0) (1.80 vs. 1.74%; p < 0.01) and lauric acids (C12:0) were significantly higher in milk of group GH (4.83 vs. 4.32%; p < 0.01) as well as linoleic (C18:2) (2.04 vs. 1.93%; p < 0.05), adrenic acid (C22:4) (0.046 vs. 0.031%, p < 0.05), omega-6/omega-3 ratio (3.17 vs. 2.93, p < 0.05) and total conjugated linoleic acids (CLAs) (0.435 vs. 0.417%; p < 0.01). The results of this study suggest that the supplementation of grazing goats' diet with hemp inflorescences may enhance the milk nutritional characteristics by increasing its content of CLAs and other beneficial fatty acids.


Subject(s)
Animal Feed , Cannabis , Diet , Dietary Supplements , Fatty Acids , Goats , Lactation , Milk , Animals , Goats/physiology , Cannabis/chemistry , Milk/chemistry , Female , Fatty Acids/analysis , Animal Feed/analysis , Dietary Supplements/analysis , Lactation/drug effects , Diet/veterinary , Inflorescence/chemistry , Animal Nutritional Physiological Phenomena
2.
RSC Med Chem ; 15(7): 2286-2299, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39026638

ABSTRACT

Several scientific evidences report that a central role in the pathogenesis of Alzheimer's disease is played by the deposition of insoluble aggregates of ß-amyloid proteins in the brain. Because Aß is self-assembling, one possible design strategy is to inhibit the aggregation of Aß peptides using short peptide fragments homologous to the full-length wild-type Aß protein. In the past years, several studies have reported on the synthesis of some short synthetic peptides called ß-sheet breaker peptides (BSBPs). Herein, we present the synthesis of novel (cell-permeable) N-methyl BSBPs, designed based on literature information on the structural key features of BSBPs. Three-dimensional GRID-based pharmacophore peptide screening combined with PT-WTE metadynamics was performed to support the results of the design and microwave-assisted synthesis of peptides 2 and 3 prepared and analyzed for their fibrillogenesis inhibition activity and cytotoxicity. An HR-MS-based cell metabolomic approach highlighted their cell permeability properties.

3.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38929184

ABSTRACT

Selenosugars are gaining growing interest due to their antioxidant efficacy, and their ability to inhibit glycosidases, repair skin tissue or reduce endothelial dysfunction. Among selenosugars, those in which selenium replaces heterocyclic oxygen in a 5-membered sugar were our focus, and their coupling with phenolic compounds appears to be a strategy aimed at producing new compounds with enhanced antioxidant efficacy. In this context, the Mitsunobu reaction has been advantageously explored to obtain trans-p-coumaroyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose, trans-caffeoyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose, and trans-feruloyl-1,4-deoxy-2,3-O-isopropylidene-4-seleno-d-ribose. These compounds underwent removal of the iso-propylidene group, to provide the corresponding hydroxycinnamoyl-1,4-deoxy-4-seleno-d-ribose. All compounds were characterized by Nuclear Magnetic Resonance (NMR) spectroscopy and High-Resolution Mass Spectrometry (HRMS). This latter technique was pivotal for ensuing cellular metabolomics analyses. In fact, after evaluating the anti-radical efficacy through 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, which underline the massive role of the phenolic moiety in establishing efficacy, the compounds, whose cytotoxicity was first screened in two highly oxidative-stress-sensitive cells, were tested for their wound healing properties towards human HaCaT keratinocytes cells. Caffeoyl- and feruloyl selenosugars exerted a dose-dependent repair activity, while, as highlighted by the metabolomic approach, they were poorly taken up within the cells.

4.
Antioxidants (Basel) ; 13(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38671850

ABSTRACT

The use of Nigella damascena seeds in the culinary field or as aerial parts infusions in the pharmaceutical and cosmetic fields is widely reported. The biological activity of this plant, as demonstrated over the years, is closely related to its phytochemical content. This investigation focused on the comparative study of the same plants of N. damascena, one totally wild (WND), while the other two, one with white flowers (CWND) and the other with blue flowers (CBND), were subject to cultivation, irrigation, and manual weeding. Using the potential of 1D and 2D-NMR spectroscopy, coupled with MS/MS spectrometric studies, the three methanolic extracts of N. damascena were investigated. Chemical studies have highlighted the presence of triterpene saponin compounds and various glycosylated flavonoids. Finally, the in vitro antiproliferative and antioxidant activities of the three individual extracts were evaluated. The antiproliferative activity performed on U-937, HL-60, and MCF-7 tumor cell lines highlighted a greater anticancer effect of the CBND and CWND extracts compared to the data obtained using WND. The antioxidant activity, however, performed to quantify ROS generation is comparable among the extracts used.

5.
Front Cell Dev Biol ; 12: 1374626, 2024.
Article in English | MEDLINE | ID: mdl-38544817

ABSTRACT

Introduction: Dimethyl sulfoxide (DMSO) is widely used as a diluent and/or solvent for pharmacological compounds. Furthermore, DMSO crosses the blood-brain barrier acting on the nervous system. The natural compounds phenylamides and lignanamides (LnHS) have protective effects on neuronal health, being promising neuroprotective candidates. In this scenario, we evaluated the impact of DMSO and/or LnHS on SH-SY5Y and U-87 cells, taken as in vitro model of neurons and glia. Methods: Cells were treated with DMSO and/or LnHS at different doses and proliferation (MTT and trypan blue counting, colony forming ability, autophagy, oxidative stress (NO, ROS determination) and inflammatory (IL8, IL6, TNFα mRNA expression) response was evaluated. Results: We found that DMSO reduces both neuronal and glial cell viability, while LnHS does not affect viability of SH-SY5Y cells but reduces that of U-87 cells. Therefore, we focused on SHSY5Y cells and investigated whether LnHS could counteract DMSO toxicity. LnHS partially attenuates the inhibitory effects of DMSO on cell viability and restores the colony-forming ability of SH-SY5Y cells exposed to DMSO. Furthermore, we found that co-administration of LnHS modulates the expression of SIRT3 and SOD2 enzymes, reduces nitrite release and ROS generation increasing IL-8 levels. Interestingly, co-administration of LnHS counteracts the DMSO-induced production of IL-6, while no modification in TNF-α was found. Discussion: Our study indicates LnHS as a potential feasible compound to support neuronal health as it counteracts DMSO induced cytotoxic effects by improving SH-SY5Y cells survival. Further studies are needed to clarify the molecular mechanisms underlying the LnHS biological activities.

6.
Molecules ; 29(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38398557

ABSTRACT

Walnut processing generates considerable quantities of by-products that could be reprocessed into value-added products that have food and non-food applications. In this context, the aim of this study is to characterize the 'Sorrento' and 'Tulare' walnut cultivars using the UPOV guidelines and analyze the chemical composition and antioxidant activity of their shells. Insight into the chemical composition of the different granulometric fractions of walnut shell, obtained by sieving, was obtained following ultrasound-assisted extraction by Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS). The total phenolic, flavonoid, and tannin content and antiradical capacity, obtained by DPPH and ABTS assays, and the Fe(III) reducing power of the extracts were also evaluated. The UHPLC-HRMS analysis indicated the presence of thirty-two compounds ascribable to four major classes of specialized metabolites. Furthermore, the extraction efficiency of gallic acid, ellagic acid derivatives, as well as glansreginin A, increased with the decrease in shell matrix particle size in contrast to chlorogenic acids and flavonoid glycosides. This is the first study to highlight new knowledge on the chemical composition of walnut shells. The results obtained demonstrate the feasibility of recovering valuable bioactive components from agro-waste that may be further valorized.


Subject(s)
Juglans , Juglans/chemistry , Ferric Compounds , Plant Extracts/chemistry , Flavonoids , Antioxidants/chemistry , Phytochemicals
7.
Viruses ; 15(8)2023 07 28.
Article in English | MEDLINE | ID: mdl-37631991

ABSTRACT

In a framework aimed at the recovery and enhancement of medicinal plants endemic to the territory of the Cilento and Vallo di Diano National Park, Lavandula austroapennina N.G. Passal., Tundis and Upson has aroused interest. An insight into the chemical composition of the corolla, calyx, leaf, stem, and root organs was carried out following ultrasound-assisted maceration in n-hexane. The obtained lipophilic extracts were explored using ultra-high-performance chromatography coupled to high-resolution mass spectrometry (UHPLC-ESI-QqTOF-MS/MS). The extracts from the different organs varied in their relative content of fatty acids, ursanes, and oleanane-type triterpenes. In particular, the oleanolic acid content appeared to increase in the order of corolla < leaf < stem. An MTT assay was performed to verify the possible cytotoxicity of the organ extracts of L. austroapennina at a concentration ranging from 12.5 to 400 µg/mL on the Vero CCL-81 cell line. Antiviral activity against herpes simplex virus type 1 (HSV-1), alpha human coronavirus 229E (HCoV-229E), and poliovirus type 1 (PV-1) was evaluated via a plaque reduction assay in the same cellular model. All the extracts did not show cytotoxic effects after 2 and 24 h exposure times, and the antiviral efficacy was particularly important for the stem extract, capable of completely inhibiting the tested viruses at low doses. The antiviral activity in a non-enveloped virus PV-1 allowed the assertion that the extracts from the organs of L. austroapennina, and especially the stem extract, interfered directly with the viral envelope. This study underlines how much knowledge of a territory's medicinal plant heritage is a harbinger of promising discoveries in the health field.


Subject(s)
Gastropoda , Lavandula , Oleanolic Acid , Humans , Animals , Antiviral Agents/pharmacology , Tandem Mass Spectrometry , Biological Assay , Plant Extracts/pharmacology
8.
Molecules ; 28(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37630206

ABSTRACT

The dyeing and finishing step represents a clear hotspot in the textile supply chain as the wet processing stages require significant amounts of water, energy, and chemicals. In order to tackle environmental issues, natural dyes are gaining attention from researchers as more sustainable alternatives to synthetic ones. This review discusses the topic of natural dyes, providing a description of their main features and differences compared to synthetic dyes, and encompasses a summary of recent research in the field of natural dyes with specific reference to the following areas of sustainable innovation: extraction techniques, the preparation of substrates, the mordanting process, and the dyeing process. The literature review showed that promising new technologies and techniques have been successfully employed to improve the performance and sustainability of natural dyeing processes, but several limitations such as the poor fastness properties of natural dyes, their low affinity with textiles substrates, difficulties in the reproducibility of shades, as well as other factors such as cost-effectiveness considerations, still prevent industry from adopting natural dyes on a larger scale and will require further research in order to expand their use beyond niche applications.

9.
Mar Drugs ; 21(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37504915

ABSTRACT

In the last decades, the interest in bioactive compounds derived from natural sources including bacteria, fungi, plants, and algae has significantly increased. It is well-known that aquatic or terrestrial organisms can produce, in special conditions, secondary metabolites with a wide range of biological properties, such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. In this study, we focused on the extremophilic microalga Galdieria sulphuraria as a possible producer of bioactive compounds with antiviral activity. The algal culture was subjected to organic extraction with acetone. The cytotoxicity effect of the extract was evaluated by the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The antiviral activity was assessed through a plaque assay against herpesviruses and coronaviruses as enveloped viruses and poliovirus as a naked one. The monolayer was treated with different concentrations of extract, ranging from 1 µg/mL to 200 µg/mL, and infected with viruses. The algal extract displayed strong antiviral activity at non-toxic concentrations against all tested enveloped viruses, in particular in the virus pre-treatment against HSV-2 and HCoV-229E, with IC50 values of 1.7 µg/mL and IC90 of 1.8 µg/mL, respectively. However, no activity against the non-enveloped poliovirus has been detected. The inhibitory effect of the algal extract was confirmed by the quantitative RT-PCR of viral genes. Preliminary chemical profiling of the extract was performed using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS), revealing the enrichment in primary fatty acid amides (PFAA), such as oleamide, palmitamide, and pheophorbide A. These promising results pave the way for the further purification of the mixture to explore its potential role as an antiviral agent.


Subject(s)
Coronavirus Infections , Rhodophyta , Viruses , Humans , Antiviral Agents/chemistry , Rhodophyta/metabolism , Plant Extracts/pharmacology
10.
Foods ; 12(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37509738

ABSTRACT

In recent years, as part of sustainable development policies, the revaluation of end-of-life products has become more and more widespread. In terms of sustainability, in a scenario of circular economy food sustainability aims, inter alia, at making an effective re-use of natural resources as a starting point for the obtainment of high added-value products. With the aim of promoting the valorization of the wine sector wastes, the present study took into account the leaves of Vitis vinifera L. cv. Aglianico from the Campania Region (Italy). The use of deep eutectic solvents as a greener alternative to the most common organic solvents, joint to ultrasound-assisted maceration, and LC-MS tools, allowed us to define for the first time a six-month quantitative variation of flavonol derivatives, and in particular of quercetin 3-O-glucuronide, based on the collection time and the leaf height on the grapevine. Results underlined that the influence of abiotic factors, such as exposure to sunlight, which is pivotal in the biosynthesis of such compounds, should be strictly considered for their full recovery.

11.
Antioxidants (Basel) ; 12(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37371972

ABSTRACT

Breast cancer (BC) remains the leading cause of mortality in women, despite significant advancements in diagnosis. Thus, the identification of new compounds for its treatment is critical. Phytochemicals are known to exhibit anti-cancer properties. Here, we investigated the anti-proliferation potential of extracts from carrot, Calendula officinalis flower, and Aloe vera on breast cancer vs. epithelial cell lines. Various extraction methods were used, and the proliferative effect of the resulting extracts was assessed by proliferation assay on breast cancer and epithelial cell lines. Carrot, Aloe leaf, and Calendula flower extracts were extracted by hexane and methanol methods, and their semi-purified extracts were able to specifically inhibit the proliferation of breast cancer cell lines. The extract composition was investigated by colorimetric assays, UHPLC-HRMS, and MS/MS analysis. All the extracts contained monogalactosyl-monoacylglycerol (MGMG), while digalactosyl-monoacylglycerol (DGMG) and aloe-emodin were found in Aloe, and glycerophosphocholine (GPC) derivatives were identified in Calendula, except for the isomer 2 detected in carrot, suggesting that their observed different anti-proliferative properties may be associated with the different lipid compounds. Interestingly, Calendula extract was able to strongly inhibit the triple negative breast cancer MDA-MB-231 cell line proliferation (about 20% cell survival), supporting MGMG and GPC derivatives as potential drugs for this BC subtype treatment.

12.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175744

ABSTRACT

Lavandula austroapennina N.G. Passal., Tundis and Upon has recently been described as a new species endemic to the southern Apennines (Italy). Locally, this species has a long ethnobotanical tradition of use for curative and decoration purposes and has been the protagonist of a flourishing essential oil production chain. Currently, while this tradition has long since ended, attention to the species is necessary, with a view to enhancing marginal and rural areas, as a recovery of a precious resource to (i) get insights into its (poly)phenolic fraction and (ii) address new and innovative uses of all its organs in various application fields (e.g., cosmeceutical sector). Therefore, after field sampling and dissection of its organs (i.e., corolla, calyx, leaf, stem and root), the latter, previously deterpenated and defatted, were subjected to accelerated ultrasound extraction and the related alcoholic extracts were obtained. Chemical composition, explored by UHPLC-QqTOF-MS/MS, and the following multivariate data analysis showed that the hydroxycinnamoyl derivatives are abundant in the leaf, stem and root, while flavonoids are more present in corolla and calyx. In particular, coumaroyl flavonoids with glyconic portion containing also hexuronyl moieties differentiated corolla organ, while yunnaneic acid D isomers and esculin distinguished root. When antiradical and reducing properties were evaluated (by means of ABTS, DPPH and PFRAP tests), a similar clustering of organs was achieved and the marked antioxidant efficacy of leaf, stem and root extracts was found. Thus, following cytotoxicity screening by MTT test on HaCaT keratinocytes, the protective effects of the organ extracts were assessed by wound closure observed after the scratch test. In addition, the extracts from corolla, leaf and stem were particularly active at low doses inducing rapid wound closure on HaCaT cells at a concentration of 1 µg/mL. The diversity in (poly)phenols of each organ and the promising bioactivity preliminarily assessed suggest further investigation to be carried out to fully recover and valorize this precious endemic vascular plant.


Subject(s)
Lamiaceae , Lavandula , Polyphenols , Lavandula/chemistry , Tandem Mass Spectrometry , Plant Extracts/chemistry , Flavonoids/pharmacology , Flavonoids/analysis , Antioxidants/chemistry
13.
Molecules ; 28(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37110721

ABSTRACT

Organic-inorganic hybrid materials were synthesized by a sol-gel route, using silicon alkoxide together with low molecular weight polycaprolactone and caffetannic acid. The synthesized hybrids were characterized by scanning Fourier-transform infrared (FTIR) spectroscopy, and their surface morphology was acquired by scanning electron microscopy (SEM) analysis. The hybrids were investigated for their antiradical capacity using the DPPH and ABTS tests, while the Kirby-Bauer test was used to evaluate their effects on the growth of Escherichia coli and Enterococcus faecalis. Furthermore, a biologically active hydroxyapatite layer has been observed to form on the surface of intelligently synthesized materials. The MTT direct test showed that the hybrid materials are biocompatible with NIH-3T3 fibroblast cells, while they were cytotoxic towards colon, prostate, and brain tumor cell lines. These results shed new light on the suitability of the synthesized hybrids in the medical field, thus affording knowledge on the features of the bioactive silica-polycaprolactone-chlorogenic acid hybrids.


Subject(s)
Chlorogenic Acid , Silicon Dioxide , Silicon Dioxide/chemistry , Chlorogenic Acid/chemistry , Durapatite/chemistry , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry
14.
Antioxidants (Basel) ; 12(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36978787

ABSTRACT

The brain, composed of billions of neurons, is a complex network of interacting dynamical systems controlling all body functions. Neurons are the building blocks of the nervous system and their impairment of their functions could result in neurodegenerative disorders. Accumulating evidence shows an increase of brain-affecting disorders, still today characterized by poor therapeutic options. There is a strong urgency to find new alternative strategies to prevent progressive neuronal loss. Polyphenols, a wide family of plant compounds with an equally wide range of biological activities, are suitable candidates to counteract chronic degenerative disease in the central nervous system. Herein, we will review their role in human healthcare and highlight their: antioxidant activities in reactive oxygen species-producing neurodegenerative pathologies; putative role as anti-acetylcholinesterase inhibitors; and protective activity in Alzheimer's disease by preventing Aß aggregation and tau hyperphosphorylation. Moreover, the pathology of these multifactorial diseases is also characterized by metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), most important for cellular function. In this scenario, polyphenols' action as natural chelators is also discussed. Furthermore, the critical importance of the role exerted by polyphenols on microbiota is assumed, since there is a growing body of evidence for the role of the intestinal microbiota in the gut-brain axis, giving new opportunities to study molecular mechanisms and to find novel strategies in neurological diseases.

15.
Molecules ; 27(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557796

ABSTRACT

Castanea sativa Mill. (Fagaceae) is a deciduous tree grown for its wood and edible fruits. Chestnut processing produces residues (burs, shells, and leaves) exploitable for their diversity in bioactive compounds in animal nutrition. In fact, plant-specialized metabolites likely act as rumen modifiers. Thus, the recovery of residual plant parts as feed ingredients is an evaluable strategy. In this context, European chestnut leaves from northern Germany have been investigated, proving to be a good source of flavonoids as well as gallo- and ellagitannins. To this purpose, an alcoholic extract was obtained and an untargeted profiling carried out, mainly by means of ultra-high-performance liquid chromatography/high-resolution tandem mass spectrometry (UHPLC-HR MS/MS) techniques. To better unravel the polyphenol constituents, fractionation strategies were employed to obtain a lipophilic fraction and a polar one. This latter was highly responsive to total phenolic and flavonoid content analyses, as well as to antiradical (DPPH● and ABTS+●) and reducing activity (PFRAP) assays. The effect of the alcoholic extract and its fractions on rumen liquor was also evaluated in vitro in terms of fermentative parameter changes and impact on methanogenesis. The data acquired confirm that chestnut leaf extract and the fractions therefrom promote an increase in total volatile fatty acids, while decreasing acetate/propionate ratio and CH4 production.


Subject(s)
Fagaceae , Tandem Mass Spectrometry , Animals , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Fermentation , Rumen , Flavonoids , Fagaceae/chemistry
16.
Antioxidants (Basel) ; 11(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36552573

ABSTRACT

The genus Quercus supplies a large amount of residual material (e.g., bark, acorns, leaves, wood), the valorization of which can favor a supply of antioxidant polyphenols to be used in the pharmaceutical, nutraceutical, or cosmeceutical sector. The recovery of specialized metabolites could also benefit livestock feeding, so much so that polyphenols have gained attention as rumen fermentation modifiers and for mitigating the oxidative imbalance to which farm animals are subject. In this context, leaves of Quercus robur L. from Northern Germany were of interest and the alcoholic extract obtained underwent an untargeted profiling by means of ultra-high-performance liquid chromatography/high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) techniques. As triterpenes and fatty acids occurred, the alcoholic extract fractionation pointed out the obtainment of a polyphenol fraction, broadly constituted by coumaroyl flavonol glycosides and condensed tannins. Total phenol, flavonoid and condensed tannins content assays, as well as antiradical (DPPH● and ABTS+●) and reducing activity (PFRAP) were carried out on the alcoholic extract and its fractions. When the effects on rumen liquor was evaluated in vitro in terms of changes in fermentation characteristics, it was observed that oak leaf extract and its fractions promoted an increase in total volatile fatty acids and differently modulated the relative content of each fatty acid.

17.
Foods ; 11(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36553698

ABSTRACT

Edible, plant-derived foodstuffs are recognized as precious sources of polyphenol compounds, whose consumption has proven to have multiple beneficial effects on human health. However, the awareness that cooking processes are able to induce quali-quantitatively changes in their native occurrence and that their bioavailability after food ingestion is poor led the research to move toward the preparation of nutraceutical supplements aimed at maximizing their content by effective extractive techniques and protecting them from degradation. The present work fits into this context, proposing a green, ready-to-use formulation of capitula, stems, and leaves of Algerian artichokes, in which natural deep eutectic solvents were exploited as extracting solvents but not removed at the end of the process. MTT test on the Caco-2 cell line highlighted that mitochondrial redox activity inhibition was absent below the 50 µg/mL tested dose. Simulated in vitro digestion was used as a predictive model for formulation bioaccessibility, where the joint approach with UHPLC-HRMS techniques allowed to define the release of each polyphenol from the investigated matrices. The capitula-based sample was the richest one in flavonoids, especially luteolin and apigenin glycosides, which survived in the intestinal digesta. On the contrary, simple phenols characterized the stem sample, whose release was mainly in the gastric chyme.

18.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558038

ABSTRACT

As part of a project aimed at promoting the use of Calendula arvensis (Vaill.) L. (field marigold, Asteraceae) phytocomplexes in cosmeceutical formulations, the chemical composition in apolar specialized metabolites is herein elucidated. Furthermore, the screening of the cytotoxicity of the apolar extracts was evaluated in order to underline their safety as functional ingredients for cosmetics. After dissection of Calendula organs (florets, fruits, leaves, bracts, stems, and roots), ultrasound-assisted maceration in n-hexane as an extracting solvent allowed us to obtain oil-like mixtures, whose chemical composition has been highlighted through a UHPLC-ESI-QqTOF-MS/MS approach. Twenty-nine metabolites were tentatively identified; different compounds, among which the well-known poly-unsaturated fatty acids, and oxylipins and phosphatides were detected for the first time in Calendula genus. The screening of the dose-response cytotoxicity of the apolar extracts of C. arvensis highlighted the concentration of 10 µg/mL as the most suitable for the formulation of cosmeceutical preparations. Sera enriched with leaf and fruit apolar extracts turned out to have the best activity, suggesting it can be used as a new source in skin care thanks to their higher content in fatty acids.


Subject(s)
Calendula , Cosmeceuticals , Cosmeceuticals/pharmacology , Cosmeceuticals/analysis , Calendula/chemistry , Tandem Mass Spectrometry , Plant Leaves/chemistry , Plant Extracts/chemistry
19.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558057

ABSTRACT

Nowadays, chestnut by-products are gaining a lot of interest as a low-cost raw material, exploitable for developing added-value products. This is in line with suitable chestnut by-products' management, aimed at reducing the environmental impact, thus improving the chestnut industry's competitiveness and economic sustainability. In this context, with the aim of valorizing local cultivars of European chestnuts (Castanea sativa Mill.), our attention focused on the Verdole cultivar, which has been characterized by using the UPOV guidelines for its distinctness, homogeneity, and stability. After harvesting, Verdole chestnuts were properly dissected to collect the outer and inner shells, and episperm. Each chestnut part, previously crushed, shredded, and passed through diverse sieves, underwent ultrasound-assisted extraction. The extracts obtained were evaluated for their total phenolic, flavonoid, and tannin content. The antiradical capacity by DPPH and ABTS assays, and the Fe(III) reducing power, were also evaluated. Although all the samples showed dose-dependent antioxidant efficacy, plant matrix size strongly impacted on extraction efficiency. LC-HRMS-based metabolic profiling highlighted the occurrence of different polyphenol subclasses, whose quantitative ratio varied among the chestnut parts investigated. The outer shell was more chemically rich than inner shell and episperm, according to its pronounced antioxidant activity. The polyphenol diversity of Verdole by-products is a resource not intended for disposal, appliable in the nutraceutical sector, thus realizing a new scenario in processing chestnut waste.


Subject(s)
Fagaceae , Ferric Compounds , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Polyphenols/analysis , Antioxidants/chemistry , Dietary Supplements/analysis , Fagaceae/chemistry
20.
Molecules ; 27(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431852

ABSTRACT

There is growing interest in specialized metabolites for fortification strategies in feed and/or as an antioxidant, anti-inflammatory and antimicrobial alternative for the containment of disorders/pathologies that can also badly impact human nutrition. In this context, the improvement of the diet of ruminant species with polyphenols and the influence of these compounds on animal performance, biohydrogenation processes, methanogenesis, and quality and quantity of milk have been extensively investigated through in vitro and in vivo studies. Often conflicting results emerge from a review of the literature of recent years. However, the data suggest pursuing a deepening of the role of phenols and polyphenols in ruminant feeding, paying greater attention to the chemistry of the single compound or to that of the mixture of compounds more commonly used for investigative purposes.


Subject(s)
Livestock , Polyphenols , Animals , Humans , Animal Husbandry/methods , Ruminants , Animal Feed/analysis
SELECTION OF CITATIONS
SEARCH DETAIL