Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
3.
Rev. argent. microbiol ; 47(4): 350-359, dic. 2015. tab
Article in Spanish | LILACS | ID: biblio-843141

ABSTRACT

Con el objeto de caracterizar las poblaciones fúngicas, en particular las especies potencialmente micotoxigénicas, que pueden contaminar los granos de maíz almacenados en silos bolsa con un contenido de humedad superior al recomendado como seguro, se evaluaron 270 muestras extraídas al inicio, a los 90 días y al final de un período de almacenamiento de 5 meses. En dichas muestras se cuantificó e identificó la biota fúngica y se determinó la contaminación con fumonisinas y aflatoxinas. Asimismo, se evaluó el efecto de factores extrínsecos (ambiente), intrínsecos (granos) y tecnológicos (ubicación de los granos en el perfil del silo bolsa) sobre las poblaciones totales y micotoxigénicas. El pH de los granos y el nivel de O2 se redujeron significativamente a los 5 meses, mientras que la concentración de CO2 se incrementó en igual período. Los recuentos totales de la micobiota fueron significativamente mayores en los granos ubicados en el estrato superior del silo bolsa. Se identificaron especies micotoxigénicas de Fusarium, Aspergillus, Penicillium y Eurotium. La frecuencia de aislamiento de Fusarium verticillioides se redujo al final del almacenamiento y Aspergillus flavus solo se aisló en el inicio del almacenamiento. Los recuentos de Penicillium spp. y Eurotium spp. se incrementaron al final del almacenamiento. El 100 % de las muestras presentaron contaminación con fumonisinas, con niveles máximos de 5,707 mg/kg, mientras que las aflatoxinas contaminaron el 40 % de las muestras con niveles máximos de 0,0008 mg/kg. Las condiciones ambientales y de sustrato generadas durante el almacenamiento produjeron cambios en la composición de las poblaciones fúngicas y limitaron el desarrollo de hongos micotoxigénicos y la producción de micotoxinas.


In order to determine the behavior of mycotoxin-producing fungal populations linked with silobags stored corn grains with a moisture content greater at the recommended as safe, 270 samples taken in three times (beginning, 90 days, final) over a five month period of storage were evaluated. The fungal biota was quantified and identified and the contamination with fumonisin and aflatoxin was determined. Extrinsic factors (environment), intrinsic factors (grains) and technological factors (location of the grains in the profile of silobag) were taken into account to evaluate the presence and quantity of total and mycotoxigenic fungal populations. The pH of grains and O2 levels were significantly reduced after five months, while CO2 concentration increased in the same period. The total counts of mycobiota were significantly higher in grains located in the top layer of silobag. Mycotoxigenic species of Fusarium, Aspergillus, Penicillium and Eurotium were identified. The frequency of isolation of Fusarium verticillioides decreased at the end of storage and Aspergillus flavus was isolated only at the beginning of storage. The counts of the Penicillium spp. and Eurotium spp. were increased at the end of storage. Fumonisin contamination was found in all the samples (100 %) with maximum levels of 5.707 mg/kg whereas aflatoxin contaminated only 40 % with maximum levels of 0.0008 mg/kg. The environmental and substrate conditions generated during the storage limited the development of mycotoxigenic fungi and mycotoxin production.


Subject(s)
Zea mays , Aflatoxins/isolation & purification , Aflatoxins/adverse effects , Fumonisins/isolation & purification , Fumonisins/adverse effects , Mycotoxins/isolation & purification , Penicillium/isolation & purification , Aspergillus/isolation & purification , Biotic Factors/analysis , Eurotium/isolation & purification , Biota , Fusarium/isolation & purification , Mycotoxins/adverse effects
4.
Rev Argent Microbiol ; 47(4): 350-9, 2015.
Article in Spanish | MEDLINE | ID: mdl-26601597

ABSTRACT

In order to determine the behavior of mycotoxin-producing fungal populations linked with silobags stored corn grains with a moisture content greater at the recommended as safe, 270 samples taken in three times (beginning, 90 days, final) over a five month period of storage were evaluated. The fungal biota was quantified and identified and the contamination with fumonisin and aflatoxin was determined. Extrinsic factors (environment), intrinsic factors (grains) and technological factors (location of the grains in the profile of silobag) were taken into account to evaluate the presence and quantity of total and mycotoxigenic fungal populations. The pH of grains and O2 levels were significantly reduced after five months, while CO2 concentration increased in the same period. The total counts of mycobiota were significantly higher in grains located in the top layer of silobag. Mycotoxigenic species of Fusarium, Aspergillus, Penicillium and Eurotium were identified. The frequency of isolation of Fusarium verticillioides decreased at the end of storage and Aspergillus flavus was isolated only at the beginning of storage. The counts of the Penicillium spp. and Eurotium spp. were increased at the end of storage. Fumonisin contamination was found in all the samples (100%) with maximum levels of 5.707mg/kg whereas aflatoxin contaminated only 40% with maximum levels of 0.0008mg/kg. The environmental and substrate conditions generated during the storage limited the development of mycotoxigenic fungi and mycotoxin production.


Subject(s)
Crop Protection , Fungi/isolation & purification , Fungi/metabolism , Mycotoxins/biosynthesis , Zea mays/microbiology , Argentina
5.
Mycotoxin Res ; 29(3): 147-57, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23765598

ABSTRACT

A total of 89 freshly harvested soybean seed samples (Roundup Ready [transgenic] soybean cultivars) from the 2010/2011 crop season were collected from five locations in the Northern Pampean Region II, Argentina. These samples were analyzed for internal mycoflora, toxin production of isolated fungi, and for a range of mycotoxins. Mycotoxin analysis of aflatoxins (AFs), zearalenone (ZEA), fumonisins (FBs) and ochratoxin A (OTA) was done by HPLC-FLD (high performance liquid chromatography with postcolumn fluorescence derivatization), alternariol and alternariol monomethyl ether with HPLC-UV (HPLC with UV detection), trichothecenes (deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin, fusarenon X, 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol were analyzed by GC-ECD (gas chromatography with electron capture detector). Fungal colonization was more frequently found for samples from América, Saladillo and Trenque Lauquen than for samples from General Villegas and Trenel; a total of 1,401 fungal isolates were obtained from the soybean seeds. The most commonly identified fungal genera were Alternaria, Sclerotinia, Chaetomium, Cladosporium, Aspergillus, Penicillium, Phomopsis and Fusarium. Alternaria alternata, A.tenuissima, Aspergillus flavus, Penicillium citrinum, Fusarium verticillioides and F.semitectum were the predominant toxigenic fungal species. Mycotoxin production was confirmed for several isolates of toxigenic species, including Aspergillus flavus, A. parasiticus, Alternaria alternata, A.tenuissima, Fusarium graminearum, F semitectum and F. verticillioides. In particular, the percentage of mycotoxigenic Alternaria alternata (100%), A.tenuissima (95%) and aflatoxigenic strains of A. flavus (57%) were remarkably high. Although none of the mycotoxins, AFs, ZEA, FBs, trichothecenes and OTA, were directly detected in samples of soybean seeds, the frequent presence of toxigenic fungal species indicates the risk of multiple mycotoxin contamination.


Subject(s)
Food Contamination/analysis , Fungi/isolation & purification , Glycine max/chemistry , Glycine max/microbiology , Mycotoxins/analysis , Argentina , Chromatography, Gas , Chromatography, High Pressure Liquid , Fungi/classification , Microbiological Techniques , Seeds/chemistry , Seeds/microbiology
6.
J Agric Food Chem ; 57(7): 2778-81, 2009 Apr 08.
Article in English | MEDLINE | ID: mdl-19256539

ABSTRACT

Fumonisins in maize (Zea mays L.) grain silo bags in the conditions of three Argentine provinces were analyzed to determine how this kind of storage affects contamination and if differential storage durations or times of the year of silo bag closing and opening are factors that could modify it. Moisture content, water activity (a(w)), molds and yeasts present, and fumonisins were analyzed in 163 maize silo bags, at the moment of closing and later at opening. Storage durations ranged from 120 to 226 days. The analysis was centered on fumonisins since most samples were only contaminated with these toxins. Fumonisins, moisture content, and a(w) increased significantly, whereas mold propagules/g and yeasts CFU/g did not present significant differences between silo opening and closing. The date on which silo bags were closed and later opened, however, did affect the level of fumonisin contamination.


Subject(s)
Food Contamination/analysis , Food Preservation/instrumentation , Fumonisins/analysis , Zea mays/chemistry , Zea mays/microbiology , Argentina , Food Packaging/instrumentation , Humans , Seeds/chemistry , Seeds/microbiology , Time Factors , Water/analysis
7.
J AOAC Int ; 86(3): 551-6, 2003.
Article in English | MEDLINE | ID: mdl-12852575

ABSTRACT

Analytical data obtained on deoxynivalenol (DON) concentration in naturally contaminated wheat during processing in an industrial mill were statistically analyzed, and the distribution functions of DON concentration in lots of wheat, bran, wheat flour, and gluten were estimated. The analytical method had acceptable precision (HORRAT 0.25-0.32) for each test sample. The total variance combined sampling, sample preparation, and analytical variances were 0.188, 0.033, 0.42, and 0.0014 ppm2 for wheat, 1.93; flour, 0.99; bran, 4.68; and gluten, 0.29, respectively. The distribution function of DON contamination presented an asymmetric tail for high values of concentration in wheat grains and wheat flour; in bran it seemed to be bimodal with 2 separated peaks of different concentrations; in gluten the normal distribution function gave a reasonably good fit to empirical data. The function eta(c) = -In(-Inp), where p (c) is the cumulative distribution function was linear with c in the so-called extreme-value type I distribution and could be fitted by a cubic polynomial in c in the distributions determined for all the products. This variability and distributional information contributes to the design of better sampling plans in order to reduce the total variability and to estimate errors in the evaluation of DON concentration in lots of wheat and wheat products.


Subject(s)
Dietary Fiber/analysis , Flour/analysis , Glutens/analysis , Trichothecenes/analysis , Triticum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL