Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 151: 106365, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38183746

ABSTRACT

This study aimed to evaluate the fatigue performance of simplified ceramic restorations (leucite-reinforced glass ceramic) adhesively cemented onto substrates of different resin composites. Three options from the same commercial line were selected (Tetric N-Line, Ivoclar), classified as Conventional (CRC), Bulk-fill (BRC) and Flowable (FRC), which were used to make discs using a cylindrical metallic device (n = 19; Ø = 10 mm, thickness = 2.0 mm). A total of 57 discs (Ø = 10 mm, thickness = 1.0 mm) were made from CAD/CAM prefabricated blocks of a leucite reinforced glass-ceramic (Empress CAD, Ivoclar) to simulate a monolithic restoration, then were randomly distributed to be bonded on 19 discs of each three different resin composite substrates (CRC; BRC; or FRC) with a dual resin cement (Multilink N; Ivoclar). The samples were subjected to a compression test with a hemispherical stainless-steel piston (Ø = 40 mm) at a monotonic regimen (n = 4; 1 mm/min loading rate and 500 kgf loading cell until fracture). The cyclic fatigue test was performed underwater at a frequency of 20 Hz (n = 15). The first step was applied using 200N for 5000 cycles, followed by increments of 50N at each step of 10,000 until failure. The outcome considered for both tests was the occurrence of radial crack. Specific statistical tests (α = 0.05) were performed for monotonic (One-way ANOVA; Tukey's test) and fatigue data (Kaplan-Meier test; Log-rank test). Fractography of fractured samples were also performed. The FRC group had the lowest failure load in both test regimes (p < 0.05; monotonic: 726.64N; fatigue: 716.67N). There were no differences between the CRC and BRC groups (p > 0.05; monotonic: 989.30 and 990.11N; fatigue: 810.00 and 833.33N, respectively). The same result was obtained considering cycles for fatigue failure (FRC < CRC=BRC). Leucite glass-ceramic bonded to substrates made of flowable resin composite behaves worse mechanically than bonding to conventional or bulk-fill resin composite substrates.


Subject(s)
Aluminum Silicates , Ceramics , Computer-Aided Design , Surface Properties , Materials Testing , Weight-Bearing , Dental Stress Analysis , Dental Porcelain , Dental Restoration Failure
2.
J Mech Behav Biomed Mater ; 150: 106254, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38035645

ABSTRACT

The present study aimed to evaluate the impact of the existence of an abutment screw-access hole and the filling effects on the fatigue mechanical behavior of a luted lithium-disilicate glass-ceramic. Seventy-two discs (Ø = 10 mm, 1.0 mm in thickness) of lithium disilicate (IPS e.max CAD, Ivoclar AG) were obtained from prefabricated blocks. Thirty-six abutment specimens of an opaque zirconia (Yz - IPS e.max ZirCAD, Ivoclar AG) and titanium (Ti - Luminesse Ti-Cam discs, Talladium Inc.) were confectioned, and allocated according to 6 groups: Yz and Ti rigid (without screw access hole); Yz unfilled, Yz filled, Ti unfilled and Ti filled (with the screw access (Ø = 2.5 mm) in the center). For the unfilled groups, only a polytetrafluoroethylene tape was used. Resin composite (Tetric N-Ceram, Ivoclar AG) was applied to the screw access hole for the filled groups (Yz and Ti). A cyclic fatigue test was carried out (load of 200 N, 10,000 cycles each; 20 Hz of frequency, step size of 100 N until failure detection (radial/cone crack). The fatigue failure load (FFL) and number of cycles until failure (CFF) were recorded for statistical purposes. The stress distribution (MPa) was evaluated by finite element analysis. A statistically positive effect of the abutment material and the presence of the screw access hole was observed (p ≤ 0.05). The rigid groups (without screw access holes) depicted almost 100% of survival after the fatigue tests. Among the other groups, the Yz-filled group showed the best performance (p ≤ 0.05), followed by the Yz unfilled group. The Ti groups depicted lower values of FFL and CFF, with the Ti unfilled group showing the most unfavorable fatigue behavior (p ≤ 0.05). The lowest tensile stress concentration in the restorative material was observed with the use of rigid abutments, the filled groups depicted intermediate values, while unfilled groups showed the highest stress concentration (Yz rigid = 306.3 MPa; Ti rigid = 310.4 MPa < Yz filled = 490.7 MPa; Ti filled = 498.9 MPa < Yz unfilled = 707.6 MPa; Ti unfilled = 719.7 MPa). Therefore, the presence of a screw-access hole decreases the mechanical performance of a lithium disilicate ceramic regardless of the abutment material. In the presence of a screw-access hole, zirconia abutments depicted a higher fatigue failure load when compared with titanium. The filling of the abutment screw-access hole with resin composite increased the mechanical performance of the simulated restoration.


Subject(s)
Ceramics , Lithium , Titanium , Surface Properties , Materials Testing , Dental Stress Analysis , Dental Porcelain , Zirconium , Bone Screws , Computer-Aided Design , Dental Restoration Failure
3.
J Mech Behav Biomed Mater ; 150: 106338, 2024 02.
Article in English | MEDLINE | ID: mdl-38159495

ABSTRACT

The aim of this study was to mechanically characterize through flexural fatigue test two CAD-CAM glass-ceramics according to distinct surface etching protocols. To do so, feldspathic (FELD) and lithium disilicate (LD) glass ceramics were subjected to different surface treatments: (1) control - no treatment (Ctrl); (2) conventional protocol etching with 5% hydrofluoric acid followed by silane coupling agent application (HF + SIL; Monobond N, Ivoclar); or (3) using a self-etching ceramic primer (E&P; Monobond Etch & Prime, Ivoclar). Ceramic discs (N = 120; Ø = 12 mm; thickness = 1.2 mm) were produced from CAD-CAM blocks, with 60 being from FELD (VITABLOCS Mark II, Vita Zahnfabrik) and 60 from LD (IPS e.max CAD, Ivoclar). Next, 20 disks of each ceramic were allocated into three groups: Ctrl, HF + SIL, or E&P. Surface roughness data were collected on all samples before and after surface treatments (except for Ctrl). Cyclic fatigue (n = 15) biaxial flexural strength tests were performed by the piston-on-three-balls geometry (ISO 6872) considering the test parameters established from a monotonic test (n = 5). The monotonic test was carried out at a 1 mm/min loading rate and 500 kgf loading cell until fracture to obtain the failure data. The cyclic fatigue test was executed underwater at a frequency up to 20 Hz, with the first stress being 25% of the monotonic test for 5000 cycles, followed by increments of 5% of the monotonic test at each step of 10,000 cycles until failure (fracture). Complementary fractography, topography and Atomic Force Microscopy (AFM) analyses were performed. Characteristic Fatigue Strength (CFS) and Weibull modulus were analyzed by Weibull analysis using the fatigue test data. Roughness and complementary analysis data were analyzed by one-way ANOVA. The statistical results exhibited similar CFS among Ctrl, HF + SIL and E&P for both glass-ceramics. The survival analysis corroborates the findings, however the Weibull modulus pointed out superior structural reliability of FELD treated with the E&P group compared to HF + SIL. According to the complementary analyses, HF + SIL exhibited a higher surface area than E&P and Ctrl for FELD (p = 0.001). Roughness showed statistically significant differences among conditions for FELD (E&P < Ctrl = HF + SIL; p < 0.05) and no difference for LD (p > 0.05). Therefore, the CFS were not influenced by any condition evaluated for FELD and LD glass-ceramics; however, superior structural reliability (higher Weibull modulus) for the feldspathic ceramic treated with the E&P was observed.


Subject(s)
Dental Bonding , Silanes , Surface Properties , Silanes/chemistry , Hydrofluoric Acid , Reproducibility of Results , Materials Testing , Acid Etching, Dental , Ceramics/chemistry , Dental Porcelain , Dental Stress Analysis , Resin Cements
4.
J Mech Behav Biomed Mater ; 142: 105829, 2023 06.
Article in English | MEDLINE | ID: mdl-37068429

ABSTRACT

The purpose of the present study was to characterize the elastic modulus and Poisson's ratio of a resin cement with distinct viscosities, and to evaluate their impact on the static and fatigue strength of a translucent zirconia (4Y-PSZ) after air-abrasion surface treatment. Bar-shaped specimens of two different viscosities of resin cement (high and low) were obtained (25 × 10 × 3 mm). Sonelastic and Maxwell principles tests were performed to determine the elastic modulus and Poisson's ratio of each resin cement. Disc-shaped specimens of 4Y-PSZ were made (Ø = 15 mm, 1.2 mm in thickness) for the mechanical tests and allocated into groups according to two factors: surface treatment (presence or absence of air-abrasion with alumina particles; 45 µm grain-size); cement (absence, low or high viscosity). The static (n = 10) and cyclical (n = 15) biaxial flexural strength tests were performed by piston-on-three-balls geometry. A fatigue strength test was executed (20 Hz, initial stress of 60 MPa [12% of the mean static biaxial flexural strength], followed by increments of 25 MPa [5% of the mean static biaxial flexural strength] at each step of 10,000 cycles until the failure). The obtained data were analyzed by Weibull analysis. Survival rates were tabulated by the Kaplan-Meier test. Complementary analyses of surface roughness, topography, cross-sectional interfacial zone, fractography, and zirconia crystalline content (X-ray diffraction) were also performed. The evaluated resin cements with high and low viscosity presented similar elastic modulus (13.63 GPa; 12.74 GPa) and Poisson's ratio (0.32; 0.30), respectively. The air-abraded groups depicted higher mechanical strength of the zirconia ceramics than non-abraded groups (p˂ 0.05), regardless of the resin cement. 4Y-PSZ adhesively bonded to a high or low viscosity resin cement have statistically similar behavior (p˃ 0.05). The mechanical structural reliability of the 4Y-PSZ was not affected by the factors. Therefore, resin cement with high and low viscosity presented similar properties and potential to fill the zirconia surface, and did not affect the mechanical behavior of 4Y-PSZ. However, the air-abrasion surface treatment increased the static and fatigue flexural strength of the translucent zirconia.


Subject(s)
Resin Cements , Zirconium , Materials Testing , Resin Cements/chemistry , Viscosity , Reproducibility of Results , Cross-Sectional Studies , Weight-Bearing , Zirconium/chemistry , Ceramics/chemistry , Surface Properties , Dental Stress Analysis
5.
J Prosthet Dent ; 128(3): 496.e1-496.e8, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35985853

ABSTRACT

STATEMENT OF PROBLEM: Information regarding the masking ability of ceramic crowns over different implant abutment materials is scarce. PURPOSE: The purpose of this in vitro study was to evaluate the masking ability of different monolithic or bilayer ceramic materials with different thicknesses over substrates indicated for implant restorations by using opaque and translucent evaluation pastes. MATERIAL AND METHODS: Disk-shaped specimens, shade A1 (VITA Classic; Ø10×1.5 to 2.5 mm), of different ceramics (a bilayer system [yttria-stabilized zirconia infrastructure+porcelain veneer: Zir+Pc] and monolithic systems [lithium disilicate under low, medium, or high translucency: LtLD, MtLD, or HtLD, respectively, and a high-translucent yttria-stabilized zirconia: HtZir]) were made (n=4). The color difference (ΔE00) was assessed by using the CIEDE2000 formula and considering the different ceramic systems over 5 implant abutment materials (A1 shade Zir [Zir A1]; white Zir [White Zir]; A1 low-translucency lithium disilicate [LD]; polyetheretherketone [PEEK]; and titanium [Ti]) when using 2 different evaluation pastes (translucent or opaque). The control comparison was the restorative material positioned over the Zir A1 substrate with a translucent evaluation paste. Statistical analysis was made by using a 2-way ANOVA and Tukey post hoc tests (α=.05) for ΔE00 data considering the restorative material and luting agent factors as their association. Additionally, ΔE00 data were qualitatively analyzed considering the acceptability and perceptibility thresholds. The translucency parameter (TP00) of each restorative material was evaluated, and data were submitted to 1-way ANOVA and Tukey post hoc tests (α=.05). RESULTS: The most predictable masking ability was seen with Zir+Pc regardless of the evaluation paste used. Nevertheless, under 1.5-mm thickness, Zir+Pc did not adequately mask Ti (ΔE00>1.77). Most monolithic ceramics did not mask discolored substrates (PEEK or Ti, ΔE00>1.77). The exception was HtZir, which presented acceptable masking ability over PEEK at 2.5-mm thickness with both evaluation pastes (ΔE00<1.77). Regardless of the restorative material thickness, Zir+Pc showed the lowest (P<.05) TP00 values (TP00=3.45 at 1.5-mm thickness; TP00=2.00 at 2.5-mm thickness), and HtLD presented the highest (P<.05, TP00=23.50 at 1.5-mm thickness; TP00=13.36 at 2.5-mm thickness). HtZir showed similar TP00 to MtLD at 1.5-mm thickness and similar TP00 to Zir+Pc when used at 2.5-mm thickness (P>.05). CONCLUSIONS: Monolithic ceramics should be used with caution over discolored implant abutments. Bilayer systems (Zir+Pc) were the most predictable approach to adequately masking discolored substrates such as PEEK or Ti. An increased restoration thickness provided higher masking ability for all restorative materials tested.


Subject(s)
Dental Implants , Dental Porcelain , Benzophenones , Ceramics/therapeutic use , Color , Crowns , Dental Cements , Dental Materials , Materials Testing , Polymers , Surface Properties , Titanium , Yttrium , Zirconium
6.
J Mech Behav Biomed Mater ; 124: 104792, 2021 12.
Article in English | MEDLINE | ID: mdl-34488172

ABSTRACT

This study evaluated the influence of surface treatments of resin composite substrate on the fatigue behavior of adhesively cemented lithium disilicate glass-ceramic simplified restorations. CAD/CAM lithium disilicate ceramic blocks were shaped into discs (N = 60, Ø = 10 mm; thickness = 1.0 mm). Resin composite discs (N = 60, Ø = 10 mm, thickness = 2 mm) were allocated into four groups considering the "surface treatment" factor: Ctrl - no surface treatment; Bur - grinding with coarse diamond bur (#3101G, KG Sorensen); PA - etching with 37% phosphoric acid (15 s); AA - air abrasion with alumina particles (45 µm, 10 mm distance, 2.8 bars, 10 s). The surface topography, the roughness, the fractal dimension (estimated by the box-counting method) and the contact angle analyses were performed after the surface treatments. The lithium disilicate discs were etched (5% hydrofluoric acid, 20 s), silanized and adhesively cemented (Multilink N, Ivoclar Vivadent) on the resin composite discs. The samples (bonded restoration set) were subjected to a step-stress fatigue test at 20 Hz, 10,000 cycles/step with a step-size of 100 N applied on the ceramic surface, having ceramic up and resin composite down. Fractographic analysis was performed. The fatigue data (Fatigue Failure Load - FFL; and Cycles for Failure - CFF) were analyzed by Kaplan Meier with Mantel-Cox log-rank post-hoc tests (α = 0.05). No statistical difference for fatigue performance could be found among the groups (FFL means: 820-867 N; CFF means: 53,195-61,090 cycles). The bur group showed higher surface roughness and contact angle values. The PA group has the highest average fractal dimension. Therefore, the resin composite surface treatment induces topographical changes, however, it has no effect on the fatigue behavior of lithium disilicate restorations.


Subject(s)
Ceramics , Dental Porcelain , Dental Stress Analysis , Materials Testing , Resin Cements , Surface Properties , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL