Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nat Commun ; 14(1): 6713, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872160

ABSTRACT

Thyroid hormones play a critical role in regulation of multiple physiological functions and thyroid dysfunction is associated with substantial morbidity. Here, we use electronic health records to undertake a genome-wide association study of thyroid-stimulating hormone (TSH) levels, with a total sample size of 247,107. We identify 158 novel genetic associations, more than doubling the number of known associations with TSH, and implicate 112 putative causal genes, of which 76 are not previously implicated. A polygenic score for TSH is associated with TSH levels in African, South Asian, East Asian, Middle Eastern and admixed American ancestries, and associated with hypothyroidism and other thyroid disease in South Asians. In Europeans, the TSH polygenic score is associated with thyroid disease, including thyroid cancer and age-of-onset of hypothyroidism and hyperthyroidism. We develop pathway-specific genetic risk scores for TSH levels and use these in phenome-wide association studies to identify potential consequences of pathway perturbation. Together, these findings demonstrate the potential utility of genetic associations to inform future therapeutics and risk prediction for thyroid diseases.


Subject(s)
Hyperthyroidism , Hypothyroidism , Thyroid Diseases , Humans , Thyrotropin/genetics , Genome-Wide Association Study , Thyroid Diseases/genetics , Hypothyroidism/genetics , Hyperthyroidism/genetics , Thyroxine
3.
Eur Respir J ; 61(6)2023 06.
Article in English | MEDLINE | ID: mdl-37263751

ABSTRACT

BACKGROUND: Chronic sputum production impacts on quality of life and is a feature of many respiratory diseases. Identification of the genetic variants associated with chronic sputum production in a disease agnostic sample could improve understanding of its causes and identify new molecular targets for treatment. METHODS: We conducted a genome-wide association study (GWAS) of chronic sputum production in UK Biobank. Signals meeting genome-wide significance (p<5×10-8) were investigated in additional independent studies, were fine-mapped and putative causal genes identified by gene expression analysis. GWASs of respiratory traits were interrogated to identify whether the signals were driven by existing respiratory disease among the cases and variants were further investigated for wider pleiotropic effects using phenome-wide association studies (PheWASs). RESULTS: From a GWAS of 9714 cases and 48 471 controls, we identified six novel genome-wide significant signals for chronic sputum production including signals in the human leukocyte antigen (HLA) locus, chromosome 11 mucin locus (containing MUC2, MUC5AC and MUC5B) and FUT2 locus. The four common variant associations were supported by independent studies with a combined sample size of up to 2203 cases and 17 627 controls. The mucin locus signal had previously been reported for association with moderate-to-severe asthma. The HLA signal was fine-mapped to an amino acid change of threonine to arginine (frequency 36.8%) in HLA-DRB1 (HLA-DRB1*03:147). The signal near FUT2 was associated with expression of several genes including FUT2, for which the direction of effect was tissue dependent. Our PheWAS identified a wide range of associations including blood cell traits, liver biomarkers, infections, gastrointestinal and thyroid-associated diseases, and respiratory disease. CONCLUSIONS: Novel signals at the FUT2 and mucin loci suggest that mucin fucosylation may be a driver of chronic sputum production even in the absence of diagnosed respiratory disease and provide genetic support for this pathway as a target for therapeutic intervention.


Subject(s)
Genome-Wide Association Study , Sputum , Humans , Sputum/metabolism , HLA-DRB1 Chains , Quality of Life , Proteins , Mucins , Mucus/metabolism , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
4.
Nat Genet ; 55(3): 410-422, 2023 03.
Article in English | MEDLINE | ID: mdl-36914875

ABSTRACT

Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Humans , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Smoking/adverse effects , Smoking/genetics , Polymorphism, Single Nucleotide/genetics
5.
Bioinformatics ; 39(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36744935

ABSTRACT

SUMMARY: DeepPheWAS is an R package for phenome-wide association studies that creates clinically curated composite phenotypes and integrates quantitative phenotypes from primary care data, longitudinal trajectories of quantitative measures, disease progression and drug response phenotypes. Tools are provided for efficient analysis of association with any genetic input, under any genetic model, with optional sex-stratified analysis, and for developing novel phenotypes. AVAILABILITY AND IMPLEMENTATION: The DeepPheWAS R package is freely available under GNU general public licence v3.0 from at https://github.com/Richard-Packer/DeepPheWAS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Phenomics , Software , Phenotype
6.
Chest ; 161(5): 1155-1166, 2022 05.
Article in English | MEDLINE | ID: mdl-35104449

ABSTRACT

BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Asthma/diagnosis , Genome-Wide Association Study , Humans , Lung , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Smoking/genetics
7.
ERJ Open Res ; 7(2)2021 Apr.
Article in English | MEDLINE | ID: mdl-33981765

ABSTRACT

Homozygosity for the SERPINA1 Z allele causes α1-antitrypsin deficiency, a rare condition that can cause lung and liver disease. However, the effects of Z allele heterozygosity on nonrespiratory phenotypes, and on lung function in the general population, remain unclear. We conducted a large, population-based study to determine Z allele effects on >2400 phenotypes in the UK Biobank (N=303 353). Z allele heterozygosity was strongly associated with increased height (ß=1.02 cm, p=3.91×10-68), and with other nonrespiratory phenotypes including increased risk of gall bladder disease, reduced risk of heart disease and lower blood pressure, reduced risk of osteoarthritis and reduced bone mineral density, increased risk of headache and enlarged prostate, as well as with blood biomarkers of liver function. Heterozygosity was associated with higher height-adjusted forced expiratory volume in 1 s (FEV1) (ß=19.36 mL, p=9.21×10-4) and FEV1/forced vital capacity (ß=0.0031, p=1.22×10-5) in nonsmokers, whereas in smokers, this protective effect was abolished. Furthermore, we show for the first time that sex modifies the association of the Z allele on lung function. We conclude that Z allele heterozygosity and homozygosity exhibit opposing effects on lung function in the UK population, and that these associations are modified by smoking and sex. In exploratory analyses, heterozygosity for the Z allele also showed pleiotropic associations with nonrespiratory health-related traits and disease risk.

8.
PLoS One ; 14(10): e0223717, 2019.
Article in English | MEDLINE | ID: mdl-31634375

ABSTRACT

BACKGROUND: People with dementia who are admitted to hospital have worse outcomes than those without dementia. Identifying interventions that could reduce the risk of hospitalisation in people with dementia has the potential to positively impact on lives of people with dementia. This review aimed to investigate whether there are non-pharmacological interventions that successfully reduce hospitalisation risk, length of stay and mortality in people with dementia. METHODS: 7 electronic databases and trial registries were searched from inception to October 2018. We included randomised controlled trials that evaluated non-pharmacological interventions in out of hospital settings and targeted people with any type of dementia. All stages of the review process were performed by two reviewers. Risk of bias was assessed using the Cochrane Risk of Bias tool. We grouped studies based on intervention: care management, counselling/self-help, enhanced GP services or memory clinics, and physiotherapy or occupational therapy. Data were pooled within intervention categories using random effects meta-analysis. RESULTS: There was no evidence that any of the intervention categories were associated with reduced hospital admission or mortality. There was very weak evidence to suggest that care management interventions (mean difference, MD, -0.16, 95% CI -0.32, 0.01), physiotherapy/occupational therapy (MD -0.16, 95% CI -0.36, 0.03) and enhanced GP/memory clinics (MD -0.14, 95% CI -0.31, 0.03) were associated with small reductions in hospital stay. There was no evidence for an effect of counselling/self-help interventions on length of hospital stay. CONCLUSIONS: Current evidence from randomised trials suggests no clear benefit or harm associated with any of interventions on risks of hospitalisation, duration of hospitalisation or death. Further research with the primary aim to reduce hospitalisation in people with dementia is required.


Subject(s)
Dementia/epidemiology , Patient Admission , Clinical Trials as Topic , Dementia/therapy , Disease Management , Humans , Odds Ratio , Physical Therapy Modalities , Publication Bias
11.
Lancet Respir Med ; 7(1): 20-34, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30552067

ABSTRACT

BACKGROUND: Few genetic studies that focus on moderate-to-severe asthma exist. We aimed to identity novel genetic variants associated with moderate-to-severe asthma, see whether previously identified genetic variants for all types of asthma contribute to moderate-to-severe asthma, and provide novel mechanistic insights using expression analyses in patients with asthma. METHODS: In this genome-wide association study, we used a two-stage case-control design. In stage 1, we genotyped patient-level data from two UK cohorts (the Genetics of Asthma Severity and Phenotypes [GASP] initiative and the Unbiased BIOmarkers in PREDiction of respiratory disease outcomes [U-BIOPRED] project) and used data from the UK Biobank to collect patient-level genomic data for cases and controls of European ancestry in a 1:5 ratio. Cases were defined as having moderate-to-severe asthma if they were taking appropriate medication or had been diagnosed by a doctor. Controls were defined as not having asthma, rhinitis, eczema, allergy, emphysema, or chronic bronchitis as diagnosed by a doctor. For stage 2, an independent cohort of cases and controls (1:5) was selected from the UK Biobank only, with no overlap with stage 1 samples. In stage 1 we undertook a genome-wide association study of moderate-to-severe asthma, and in stage 2 we followed up independent variants that reached the significance threshold of p less than 1 × 10-6 in stage 1. We set genome-wide significance at p less than 5 × 10-8. For novel signals, we investigated their effect on all types of asthma (mild, moderate, and severe). For all signals meeting genome-wide significance, we investigated their effect on gene expression in patients with asthma and controls. FINDINGS: We included 5135 cases and 25 675 controls for stage 1, and 5414 cases and 21 471 controls for stage 2. We identified 24 genome-wide significant signals of association with moderate-to-severe asthma, including several signals in innate or adaptive immune-response genes. Three novel signals were identified: rs10905284 in GATA3 (coded allele A, odds ratio [OR] 0·90, 95% CI 0·88-0·93; p=1·76 × 10-10), rs11603634 in the MUC5AC region (coded allele G, OR 1·09, 1·06-1·12; p=2·32 × 10-8), and rs560026225 near KIAA1109 (coded allele GATT, OR 1·12, 1·08-1·16; p=3·06 × 10-9). The MUC5AC signal was not associated with asthma when analyses included mild asthma. The rs11603634 G allele was associated with increased expression of MUC5AC mRNA in bronchial epithelial brush samples via proxy SNP rs11602802; (p=2·50 × 10-5) and MUC5AC mRNA was increased in bronchial epithelial samples from patients with severe asthma (in two independent analyses, p=0·039 and p=0·022). INTERPRETATION: We found substantial shared genetic architecture between mild and moderate-to-severe asthma. We also report for the first time genetic variants associated with the risk of developing moderate-to-severe asthma that regulate mucin production. Finally, we identify candidate causal genes in these loci and provide increased insight into this difficult to treat population. FUNDING: Asthma UK, AirPROM, U-BIOPRED, UK Medical Research Council, and Rosetrees Trust.


Subject(s)
Asthma/genetics , GATA3 Transcription Factor/genetics , Genetic Predisposition to Disease , Mucin 5AC , Proteins , Adult , Aged , Case-Control Studies , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Severity of Illness Index , White People
12.
Mol Cancer ; 10: 94, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21801380

ABSTRACT

BACKGROUND: Epigenetic control is essential for maintenance of tissue hierarchy and correct differentiation. In cancer, this hierarchical structure is altered and epigenetic control deregulated, but the relationship between these two phenomena is still unclear. CD133 is a marker for adult stem cells in various tissues and tumour types. Stem cell specificity is maintained by tight regulation of CD133 expression at both transcriptional and post-translational levels. In this study we investigated the role of epigenetic regulation of CD133 in epithelial differentiation and cancer. METHODS: DNA methylation analysis of the CD133 promoter was done by pyrosequencing and methylation specific PCR; qRT-PCR was used to measure CD133 expression and chromatin structure was determined by ChIP. Cells were treated with DNA demethylating agents and HDAC inhibitors. All the experiments were carried out in both cell lines and primary samples. RESULTS: We found that CD133 expression is repressed by DNA methylation in the majority of prostate epithelial cell lines examined, where the promoter is heavily CpG hypermethylated, whereas in primary prostate cancer and benign prostatic hyperplasia, low levels of DNA methylation, accompanied by low levels of mRNA, were found. Moreover, differential methylation of CD133 was absent from both benign or malignant CD133+/α2ß1integrinhi prostate (stem) cells, when compared to CD133-/α2ß1integrinhi (transit amplifying) cells or CD133-/α2ß1integrinlow (basal committed) cells, selected from primary epithelial cultures. Condensed chromatin was associated with CD133 downregulation in all of the cell lines, and treatment with HDAC inhibitors resulted in CD133 re-expression in both cell lines and primary samples. CONCLUSIONS: CD133 is tightly regulated by DNA methylation only in cell lines, where promoter methylation and gene expression inversely correlate. This highlights the crucial choice of cell model systems when studying epigenetic control in cancer biology and stem cell biology. Significantly, in both benign and malignant prostate primary tissues, regulation of CD133 is independent of DNA methylation, but is under the dynamic control of chromatin condensation. This indicates that CD133 expression is not altered in prostate cancer and it is consistent with an important role for CD133 in the maintenance of the hierarchical cell differentiation patterns in cancer.


Subject(s)
Adult Stem Cells/metabolism , Antigens, CD/genetics , Cell Differentiation/genetics , Epithelial Cells/physiology , Glycoproteins/genetics , Neoplasms/genetics , Peptides/genetics , Promoter Regions, Genetic , AC133 Antigen , Adult Stem Cells/physiology , Animals , Antigens, CD/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Cell Line, Tumor , DNA Methylation/physiology , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Glycoproteins/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Neoplasms/metabolism , Neoplasms/pathology , Peptides/metabolism , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...