Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Tissue Res ; 374(2): 389-412, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29876633

ABSTRACT

In this study, G-coupled estrogen receptor (GPER) was inactivated, by treatment with antagonist (G-15), in testes of C57BL/6 mice: immature (3 weeks old), mature (3 months old) and aged (1.5 years old) (50 µg/kg bw), as well as MA-10 mouse Leydig cells (10 nM/24 h) alone or in combination with 17ß-estradiol or antiestrogen (ICI 182,780). In G-15-treated mice, overgrowth of interstitial tissue was found in both mature and aged testes. Depending on age, differences in structure and distribution of various Leydig cell organelles were observed. Concomitantly, modulation of activity of the mitochondria and tubulin microfibers was revealed. Diverse and complex GPER regulation at the mRNA level and protein of estrogen signaling molecules (estrogen receptor α and ß; ERα, ERß and cytochrome P450 aromatase; P450arom) in G-15 Leydig cells was found in relation to age and the experimental system utilized (in vivo and in vitro). Changes in expression patterns of ERs and P450arom, as well as steroid secretion, reflected Leydig cell heterogeneity to estrogen regulation throughout male life including cell physiological status.We show, for the first time, GPER with ERs and P450arom work in tandem to maintain Leydig cell architecture and supervise its steroidogenic function by estrogen during male life. Full set of estrogen signaling molecules, with involvement of GPER, is crucial for proper Leydig cell function where each molecule acts in a specific and/or complementary manner. Further understanding of the mechanisms by which GPER controls Leydig cells with special regard to male age, cell of origin and experimental system used is critical for predicting and preventing testis steroidogenic disorders based on perturbations in estrogen signaling.


Subject(s)
Leydig Cells/cytology , Leydig Cells/metabolism , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Aromatase/genetics , Aromatase/metabolism , Cell Shape , Cytoskeleton/metabolism , Leydig Cells/ultrastructure , Male , Mice, Inbred C57BL , Mitochondria/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Steroids/metabolism , Testis/cytology , Testis/metabolism
2.
Acta Histochem ; 120(5): 456-467, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29778238

ABSTRACT

Estrogen-related receptors (ERRs) α, ß and γ appear to be novel molecules implicated in estrogen signaling. We blocked and activated ERRs in mouse (C57BL/6) adrenals and adrenocortical cells (H295R) using pharmacological agents XCT 790 (ERRα antagonist) and DY131 (ERRß/γ agonist), respectively. Mice were injected with XCT 790 or DY131 (5 µg/kg bw) while cells were exposed to XCT 790 or DY131 (0.5 µg/L). Irrespectively of the agent used, changes in adrenocortical cell morphology along with changes in lutropin, cholesterol levels and estrogen production were found. Diverse and complex ERRs regulation of multilevel-acting steroidogenic proteins (perilipin; PLIN, cytochrome P450 side-chain cleavage; P450scc, translocator protein; TSPO, steroidogenic acute regulatory protein; StAR, hormone sensitive lipase; HSL and HMG-CoA reductase; HMGCR) was revealed. Blockage of ERRα decreased P450scc, StAR and TSPO expressions. Activation of ERRß/γ increased P450scc, StAR and HMGCR while decreased HSL expressions. PLIN expression increased either after XCT 790 or DY131 treatment. Additionally, treatment with both XCT 790 or DY131 decreased activity of Ras/Raf, Erk and Akt indicating their involvement in control of morphology and steroidogenic function of cortex cells. ERRs are important in maintaining morpho-function of cortex cells through action in specific, opposite, or common manner on steroidogenic molecules.


Subject(s)
Adrenal Glands , Phosphoproteins/physiology , Receptors, Estrogen/physiology , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Estradiol/pharmacology , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Reference Standards , ERRalpha Estrogen-Related Receptor
3.
J Physiol Pharmacol ; 68(3): 459-476, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28820402

ABSTRACT

To get a deeper insight into the function of estrogen-related receptors (ERRs) and dissect underlying mechanism in Leydig cells, ERRs (type α, ß and γ) were blocked or activated in testes of adult bank voles (Myodes glareolus) which show seasonal changes in the intratesticular sex hormones level. Both actively reproducing animals (long day conditions; LD) and those with regression of the reproductive system (short day conditions; SD) received intraperitoneal injections of selective ERRα antagonist 3-[4-(2,4-Bis-trifluoromethylbenzyloxy)-3-methoxyphenyl]-2-cyano-N-(5-trifluoromethyl-1,3,4-thiadiazol-2-yl)acrylamide (XCT 790) or selective ERRß/ERRγ agonist N-(4-(Diethylaminobenzylidenyl)-N'-(4-hydroxybenzoyl)-hydrazine (DY131) (50 µ/kg bw; six doses every other day). Markedly more, XCT 790 (P < 0.05) but also DY131 affected interstitial tissue histology whose volume increased in both LD and SD males while seminiferous epithelium structure was untouched. Ultrastructure analysis revealed alterations in mitochondria number as well as endoplasmic reticulum and Golgi complexes volume and structure especially after ERRα blockage. Diverse and complex ERRs regulation at mRNA level and protein expression (P < 0.05; P < 0.01 and P < 0.001) of steroidogenic (lutropin receptor (LHR), translocator protein (TSPO), steroidogenic acute regulatory protein (StAR)) and secretory (insulin-like protein 3 (INSL3) and relaxin (RLN)) molecules were revealed in relations to endogenous estrogen level in treated males. Notably, immunolocalization of ERRs and above proteins, exclusively in Leydig cells, indicated their involvement in Leydig cell function control based on interactions with endogenous estrogen level and/or estrogen signaling via ERRs. Treatment with XCT 790 or DY131 significantly decreased (P < 0.05; P < 0.01 and P < 0.001) intratesticular estrogens concentration, with exception in SD DY131 males. In addition, androgens level was decreased, but not in LD DY131 voles. Similarly, ERRßγ activation significantly reduced (P < 0.05; P < 0.01 and P < 0.001) cAMP and calcium ions (Ca2+) concentrations particularly in DY131 voles. Overall, for the first time, we have shown that ERRs are involved in maintenance of Leydig cell architecture and supervision of its steroidogenic and secretory activity that is closely related to endogenous estrogen status in the testis. Further understanding of mechanism(s) by which individual types of ERRs can control Leydig cell function is relevant for predicting and preventing steroidogenic and spermatogenic disorders.


Subject(s)
Leydig Cells/physiology , Receptors, Estrogen/physiology , Animals , Arvicolinae , Hydrazines/pharmacology , Leydig Cells/drug effects , Leydig Cells/metabolism , Leydig Cells/ultrastructure , Male , Microscopy, Electron, Transmission , Nitriles/pharmacology , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Signal Transduction , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...