Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(12): 3318-3330, 2023 06.
Article in English | MEDLINE | ID: mdl-37020174

ABSTRACT

Scientists and managers rely on indicator taxa such as coral and macroalgal cover to evaluate the effects of human disturbance on coral reefs, often assuming a universally positive relationship between local human disturbance and macroalgae. Despite evidence that macroalgae respond to local stressors in diverse ways, there have been few efforts to evaluate relationships between specific macroalgae taxa and local human-driven disturbance. Using genus-level monitoring data from 1205 sites in the Indian and Pacific Oceans, we assess whether macroalgae percent cover correlates with local human disturbance while accounting for factors that could obscure or confound relationships. Assessing macroalgae at genus level revealed that no genera were positively correlated with all human disturbance metrics. Instead, we found relationships between the division or genera of algae and specific human disturbances that were not detectable when pooling taxa into a single functional category, which is common to many analyses. The convention to use percent cover of macroalgae as an indication of local human disturbance therefore likely obscures signatures of local anthropogenic threats to reefs. Our limited understanding of relationships between human disturbance, macroalgae taxa, and their responses to human disturbances impedes the ability to diagnose and respond appropriately to these threats.


Subject(s)
Anthozoa , Seaweed , Animals , Humans , Coral Reefs , Ecosystem , Seaweed/physiology , Anthozoa/physiology , Pacific Ocean
2.
PLoS One ; 10(4): e0126004, 2015.
Article in English | MEDLINE | ID: mdl-25875218

ABSTRACT

Caribbean coral reefs are becoming structurally simpler, largely due to human impacts. The consequences of this trend for reef-associated communities are currently unclear, but expected to be profound. Here, we assess whether changes in fish assemblages have been non-random over several decades of declining reef structure. More specifically, we predicted that species that depend exclusively on coral reef habitat (i.e., habitat specialists) should be at a disadvantage compared to those that use a broader array of habitats (i.e., habitat generalists). Analysing 3727 abundance trends of 161 Caribbean reef-fishes, surveyed between 1980 and 2006, we found that the trends of habitat-generalists and habitat-specialists differed markedly. The abundance of specialists started to decline in the mid-1980s, reaching a low of ~60% of the 1980 baseline by the mid-1990s. Both the average and the variation in abundance of specialists have increased since the early 2000s, although the average is still well below the baseline level of 1980. This modest recovery occurred despite no clear evidence of a regional recovery in coral reef habitat quality in the Caribbean during the 2000s. In contrast, the abundance of generalist fishes remained relatively stable over the same three decades. Few specialist species are fished, thus their population declines are most likely linked to habitat degradation. These results mirror the observed trends of replacement of specialists by generalists, observed in terrestrial taxa across the globe. A significant challenge that arises from our findings is now to investigate if, and how, such community-level changes in fish populations affect ecosystem function.


Subject(s)
Coral Reefs , Fishes/physiology , Animals , Caribbean Region , Databases, Factual , Population Dynamics
3.
PLoS One ; 7(8): e42884, 2012.
Article in English | MEDLINE | ID: mdl-22952618

ABSTRACT

Managing coral reefs for resilience to climate change is a popular concept but has been difficult to implement because the empirical scientific evidence has either not been evaluated or is sometimes unsupportive of theory, which leads to uncertainty when considering methods and identifying priority reefs. We asked experts and reviewed the scientific literature for guidance on the multiple physical and biological factors that affect the ability of coral reefs to resist and recover from climate disturbance. Eleven key factors to inform decisions based on scaling scientific evidence and the achievability of quantifying the factors were identified. Factors important to resistance and recovery, which are important components of resilience, were not strongly related, and should be assessed independently. The abundance of resistant (heat-tolerant) coral species and past temperature variability were perceived to provide the greatest resistance to climate change, while coral recruitment rates, and macroalgae abundance were most influential in the recovery process. Based on the 11 key factors, we tested an evidence-based framework for climate change resilience in an Indonesian marine protected area. The results suggest our evidence-weighted framework improved upon existing un-weighted methods in terms of characterizing resilience and distinguishing priority sites. The evaluation supports the concept that, despite high ecological complexity, relatively few strong variables can be important in influencing ecosystem dynamics. This is the first rigorous assessment of factors promoting coral reef resilience based on their perceived importance, empirical evidence, and feasibility of measurement. There were few differences between scientists' perceptions of factor importance and the scientific evidence found in journal publications but more before and after impact studies will be required to fully test the validity of all the factors. The methods here will increase the feasibility and defensibility of including key resilience metrics in evaluations of coral reefs, as well as reduce costs. Adaptation, marine protected areas, priority setting, resistance, recovery.


Subject(s)
Anthozoa/physiology , Conservation of Natural Resources/methods , Coral Reefs , Algorithms , Animals , Climate , Climate Change , Ecosystem , Environment , Environmental Monitoring , Indonesia , Temperature
4.
PLoS One ; 5(1): e8895, 2010 Jan 27.
Article in English | MEDLINE | ID: mdl-20111711

ABSTRACT

Marine protected area (MPA) networks have been proposed as a principal method for conserving biological diversity, yet patterns of diversity may ultimately complicate or compromise the development of such networks. We show how a series of ecological null models can be applied to assemblage data across sites in order to identify non-random biological patterns likely to influence the effectiveness of MPA network design. We use fish census data from Caribbean fore-reefs as a test system and demonstrate that: 1) site assemblages were nested, such that species found on sites with relatively few species were subsets of those found on sites with relatively many species, 2) species co-occurred across sites more than expected by chance once species-habitat associations were accounted for, and 3) guilds were most evenly represented at the richest sites and richness among all guilds was correlated (i.e., species and trophic diversity were closely linked). These results suggest that the emerging Caribbean marine protected area network will likely be successful at protecting regional diversity even if planning is largely constrained by insular, inventory-based design efforts. By recasting ecological null models as tests of assemblage patterns likely to influence management action, we demonstrate how these classic tools of ecological theory can be brought to bear in applied conservation problems.


Subject(s)
Biodiversity , Ecology , Marine Biology , Models, Theoretical , Animals , Caribbean Region , Fishes
5.
Curr Biol ; 19(7): 590-5, 2009 Apr 14.
Article in English | MEDLINE | ID: mdl-19303296

ABSTRACT

Profound ecological changes are occurring on coral reefs throughout the tropics, with marked coral cover losses and concomitant algal increases, particularly in the Caribbean region. Historical declines in the abundance of large Caribbean reef fishes likely reflect centuries of overexploitation. However, effects of drastic recent degradation of reef habitats on reef fish assemblages have yet to be established. By using meta-analysis, we analyzed time series of reef fish density obtained from 48 studies that include 318 reefs across the Caribbean and span the time period 1955-2007. Our analyses show that overall reef fish density has been declining significantly for more than a decade, at rates that are consistent across all subregions of the Caribbean basin (2.7% to 6.0% loss per year) and in three of six trophic groups. Changes in fish density over the past half-century are modest relative to concurrent changes in benthic cover on Caribbean reefs. However, the recent significant decline in overall fish abundance and its consistency across several trophic groups and among both fished and nonfished species indicate that Caribbean fishes have begun to respond negatively to habitat degradation.


Subject(s)
Anthozoa , Ecosystem , Fishes , Population Density , Animals , Caribbean Region , Conservation of Natural Resources , Ecology
SELECTION OF CITATIONS
SEARCH DETAIL
...