Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
ACS Omega ; 9(1): 1020-1028, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222517

ABSTRACT

Fly ash (FA)-supported bimetallic nanoparticles (PdxAgy/FA) with varying Pd:Ag ratios were prepared by coprecipitation of Pd and Ag involving in situ reduction of Pd(II) and Ag(I) salts in aqueous medium. All the supported nanoparticles were thoroughly characterized with the aid of powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), electron microscopy (field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM)), and elemental analyses, which include inductively coupled plasma-optical emission spectroscopy (ICP-OES) and energy-dispersive X-ray spectroscopy (EDS). A gradual broadening and shifting of PXRD peaks, ascribable to Ag, to higher angles with an increase in the Pd:Ag ratio affirms the alloying of interface between Pd and Ag nanoparticles. The coexistence of Pd and Ag was further confirmed by EDS elemental mapping as well as by the presence of bimetallic lattices on the FA surface, as evident from the high-resolution TEM analysis. The dependency of crystallite size and average size of bimetallic nanoparticles on Ag loading (mol %) was elucidated with the help of a combination of PXRD and TEM studies. Based on XPS analysis, the charge transfer phenomenon between contacting Pd-Ag sites could be evident from the shifting of 3d core electron binding energy for both Pd and Ag compared with monometallic Pd and Ag nanoparticles. Following a pseudo-first-order reaction kinetics, all the nanocatalysts were able to efficiently reduce 4-nitrophenol into 4-aminophenol in aqueous NaBH4. The superior catalytic performance of the bimetallic nanocatalysts (PdxAgy/FA) over their monometallic (Pd100/FA and Ag100/FA) analogues has been demonstrated. Moreover, the tunable synergistic effect of the bimetallic systems has been explored in detail by varying the Pd:Ag mol ratio in a systematic manner which in turn allowed us to achieve an optimum reaction rate (k = 1.050 min-1) for the nitrophenol reduction using a Pd25Ag75/FA system. Most importantly, all the bimetallic nanocatalysts explored here exhibited excellent normalized rate constants (K ≈ 6000-15,000 min-1 mmol-1) compared with other supported bimetallic Pd-Ag nanocatalysts reported in the literature.

2.
Dalton Trans ; 53(3): 1209-1220, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38108489

ABSTRACT

Due to the requirement to establish renewable energy sources, formic acid (FA), one of the most probable liquid organic hydrogen carriers (LOHCs), has received great attention. Catalytic formic acid dehydrogenation in an effective and environmentally friendly manner is still a challenge. The N3Q3 ligand (N3Q3 = N,N-bis(quinolin-8-ylmethyl)quinolin-8-amine) and the square pyramidal [Cu(N3Q3)Cl]Cl complex have been synthesised in this work and characterised using several techniques, such as NMR spectroscopy, mass spectrometry, EPR spectroscopy, cyclic voltammetry, X-ray diffraction and DFT calculations. This work investigates the dehydrogenation of formic acid using a molecular and homogeneous catalyst [Cu(N3Q3)Cl]Cl in the presence of HCOONa. The mononuclear copper complex exhibits catalytic activity towards the dehydrogenation of formic acid in H2O with the evolution of a 1 : 1 CO2 and H2 mixture. The activation energy of formic acid dehydrogenation was calculated to be Ea = 86 kJ mol-1, based on experiments carried out at various temperatures. The Gibbs free energy was found to be 82 kJ at 298 K for the decomposition of HCOOH. The DFT studies reveal that [Cu(N3Q3)(HCOO-)]+ undergoes an uphill process of rearrangement followed by decarboxylation to generate [Cu(N3Q3)(H-)]+. The initial uphill step for forming a transition state is the rate-determining step. The [Cu(N3Q3)(H-)]+ follows an activated state in the presence of HCOOH to liberate H2 and generate the [Cu(N3Q3)(OH2)]2+.

3.
Dalton Trans ; 52(47): 17797-17809, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37781897

ABSTRACT

A novel dinuclear copper complex, [CuII2(L1)2] (L1 = 2-{[2-(8-hydroxyquinolin-2-yl)-1H-benzimidazol-1-yl]methyl}quinolin-8-ol) was synthesised and characterised through various spectroscopic techniques. This dinuclear complex (as an electrocatalyst) was employed to examine the catalytic ability towards an electrochemical hydrogen evolution reaction (HER). Redox studies in 95/5 (v/v) DMF/H2O with the addition of 30-equivalent AcOH (acid source) led to higher catalytic activities for the HER. The evolved H2, as the resultant product, was detected and confirmed from gas chromatography to afford a faradaic efficiency of 93% at an applied potential of -1.9 V vs. SCE. Based upon measurements of open-circuit potential and electrocatalytic responses, the mechanistic route for the reduction process using [CuII2(L1)2] was elucidated. Density functional theory studies reveal that through a concerted proton-coupled electron transfer (PCET) path, the HER proceeded via the formation of a Cu-H bond with a low activation energy for the dehydrogenation reaction.

4.
Inorg Chem ; 62(28): 10993-11008, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37387569

ABSTRACT

In this work, two novel dinuclear cobalt complexes, [CoII(hbqc)(H2O)]2 (Co-Cl) and [CoII(hbqn)(H2O)]2 (Co-NO2), featuring benzimidazole derived redox-active ligand have been synthesized to investigate their catalytic activities toward electrocatalytic proton reduction (where hbqc is 2-{[6-chloro-2-(8-hydroxyquinolin-2-yl)-1H-benzimidazol-1-yl]methyl}quinolin-8-ol and hbqn is 2-{[6-nitro-2-(8-hydroxyquinolin-2-yl)-1H-benzimidazol-1-yl]methyl}quinolin-8-ol). The electrochemical responses in 95/5 (v/v) DMF/H2O with the addition of 24 equiv of AcOH as a proton source manifest high catalytic activity for proton reduction to H2. The catalytic reduction event yields H2 at an applied potential of -1.9 V vs SCE. A faradaic efficiency of 85-89% was obtained from gas chromatography analysis. A series of experiments performed concluded the homogeneous behavior of these molecular electrocatalysts. Between the two complexes, the Cl-substituted analogue, Co-Cl, has an increased overpotential of 80 mV compared to its NO2-substituted counterpart, exhibiting lesser catalytic activity toward the reduction process. The high stability of electrocatalysts under the electrocatalytic conditions was established, as no noticeable degradation of catalysts was observed throughout the process. All these measurements were exploited to elucidate the mechanistic route by these molecular complexes for the reduction process. The mechanistic pathways were suggested to be operational with EECC (E: electrochemical and C: chemical). The overall reaction energy by NO2-substituted Co-NO2-catalyzed reaction is more exogenic than Cl-substituted Co-Cl-catalyzed reaction; the corresponding reaction energies are -88.9 and -85.1 kcal mol-1. The computational study indicates that Co-NO2 is more efficient toward molecular hydrogen formation reaction than Co-Cl.

5.
Inorg Chem ; 59(11): 7810-7821, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32432869

ABSTRACT

The homodinuclear CoII helicate complex [CoII(DQPD)]2 (1) was prepared by treating [Co(H2O)6](ClO4)2 with the deprotonated form of the ligand N2,N6-bis(quinolin-8-yl)pyridine-2,6-dicarboxamide (DQPDH2). Complex 1 represents a discrete homodinuclear helicate complex with two CoII centers having a distorted-octahedral geometry through an unprecedented pyridine bridge. Complex 1, upon treatment with H2O2, undergoes oxidation at one of the CoII centers followed by a structural deformation to generate the mixed-valence complex [CoIIICoII(DQPD)2](ClO4) (2·ClO4). In complex 2, the bridging through the central pyridine collapses along with the formation of Co(III) octahedral and Co(II) tetrahedral environments. Complexes 1 and 2 interconvert to one another. The effective magnetic moments for complexes 1 and 2 are respectively 5.88 and 4.30 µB. Complexes 1 and 2 have been employed for electrocatalytic proton reduction using AcOH as the proton source in 95/5 (v/v) DMF/H2O. A TOF of 30000 mmol of H2 h-1 (mol of 1)-1 at a potential of -1.7 V vs SCE was achieved. A resting-state analysis has been carried out to support the mechanism for the catalytic proton reduction.

6.
J Nanosci Nanotechnol ; 18(2): 1057-1065, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29448532

ABSTRACT

Anatase hierarchical TiO2 microsphere/carbon dots composite (HTM/CDs) was fabricated by a facile method for active visible light photocatalysis. The phase, morphology, microstructure and optical properties were investigated by X-ray diffraction, scanning electronmicroscopy, transmission electron microscopy and UV-VIS diffuse reflectance spectroscopy respectively. Under visible light illumination, the fabricated HTM/CDs composite was exhibited an enhanced photo catalytic activity compared to that of pure hierarchical TiO2 microspheres (HTM). Such an enhancement in photocatalytic activity can be attributed to an increase in the absorption of visible light. The photocatalytic activity was investigated by the degradation of a model dyemalachite green (MG) and oxygen production through water splitting.We believe that this type of hybrid material could be used as a highly active and stable visible light photocatalyst to remove pollutants as well as energy production with high performance.

7.
Dalton Trans ; 46(43): 14869-14879, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29043331

ABSTRACT

The binuclear copper complex [Cu(DQPD)]2 (where DQPD = deprotonated N2,N6-di(quinolin-8-yl)pyridine-2,6-dicarboxamide (DQPDH2)) was synthesised and characterised by various spectroscopic as well as electrochemical techniques. The binuclear copper complex was converted into a mononuclear one by the addition of 2 equivalents of pTsOH into [Cu(DQPD)]2. The interconversion between the dimer and monomer complex was studied through UV-Vis spectroscopy and cyclic voltammetry. The mononuclear copper complex showed high catalytic activity towards electrochemical proton reduction using acetic acid as the external proton source in 95 : 5 (v/v) DMF/H2O. It showed an ic/ip (where ic is the catalytic current in the presence of acetic acid and ip is the reduction peak current in absence of acid) value of 24 and a turnover rate (TOF) of 111.70 s-1 at a scan rate of 100 mV s-1 at 25 °C. The [Cu(DQPD)]2 complex evolved hydrogen under the irradiation of visible light in the presence of fluorescein (Fl) as a photosensitizer and triethylamine (TEA) as the sacrificial electron donor with an initial TOF of 0.03 s-1 with respect to the catalyst.

8.
Phys Chem Chem Phys ; 18(31): 21640-50, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-27432223

ABSTRACT

The complex Ni(DQPD) (where DQPD = deprotonated N(2),N(6)-di(quinolin-8-yl)pyridine-2,6-dicarboxamide (DQPDH2)) behaves as a visible light driven active catalyst to reduce protons from water when employed with the photosensitizer fluorescein (Fl) and triethylamine (TEA) as the sacrificial electron donor. The photocatalytic system shows very high activity, attaining 2160 turnovers and an initial turnover rate of 0.032 s(-1) with respect to the catalyst. The proposed electrocatalytic mechanism is of the CECE type (C is a chemical step protonation and E is the electrochemical step reduction), where the Ni(DQPD) catalyst undergoes rapid protonation at the non-coordinating nitrogen atom of the quinoline before undergoing reduction. The location of the pendant base is a key factor such that the N-H resulting from the protonation of the non-coordinating nitrogen atom of the quinoline is properly located to interact with the Ni-H hydride leading to heterocoupling between protons and hydrides. Theoretical calculations for the catalytic system were carried out using the density functional level of theory (DFT) and are consistent with a mechanism for catalysis in a polypyridine nickel system. This is the first report of a polypyridine based nickel catalyst where the pendant base is responsible for the internal proton relay towards the metal center through the heterocoupling between protons and hydrides to generate hydrogen.

9.
Dalton Trans ; 44(3): 920-3, 2015 01 21.
Article in English | MEDLINE | ID: mdl-25479040

ABSTRACT

[Ru(V)[double bond, length as m-dash]O](3+) and [Ru(VI)[double bond, length as m-dash]O](4+) generated from [Ru(II)(NCN-Me)(bpy)(H2O)](PF6)2 (where NCN-Me is the neutral N-methyl-3,5-di(2-pyridyl)pyridinium iodide after deprotonation of the C-H bond) play a selective role in the C-H bond oxidation of 2-(pyridin-2-yl)-9,10-dihydroacridine (PADHH) and water oxidation, respectively.


Subject(s)
Coordination Complexes/chemistry , NAD/analogs & derivatives , Ruthenium/chemistry , Carbon/chemistry , Catalysis , Hydrogen/chemistry , Hydrogen-Ion Concentration , Molecular Conformation , Nitrates/chemistry , Oxidation-Reduction , Water/chemistry
10.
Inorg Chem ; 51(15): 8091-102, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22827695

ABSTRACT

Cyclometalated ruthenium complexes having C(^)N and N(^)C type coordinating ligands with NAD(+)/NADH function have been synthesized and characterized by spectroscopic methods. The variation of the coordinating position of σ-donating carbon atom leads to a drastic change in their properties. Both the complex Ru(phbn)(phen)(2)]PF(6) ([1]PF(6)) and [Ru(pad)(phen)(2)]PF(6) ([2]PF(6)) reduced to Ru(phbnHH)(phen)(2)]PF(6) ([1HH]PF(6)) and [Ru(padHH)(phen)(2)]PF(6) ([2HH]PF(6)) by chemical and electrochemical methods. Complex [1]PF(6) photochemically reduced to [1HH]PF(6) in the presence of the sacrificial agent triethylamine (TEA) upon irradiation of visible light (λ ≥ 420 nm), whereas photochemical reduction of [2]PF(6) was not successful. Both experimental results and theoretical calculations reveal that upon protonation the energy level of the π* orbital of either of the ligands phbn or pad is drastically stabilized compared to the nonprotonated forms. In the protonated complex [Ru(padH)(phen)(2)](PF(6))(2) {[2H](PF(6))(2)}, the Ru-C bond exists in a tautomeric equilibrium with Ru═C coordination and behaves as a remote N-heterocyclic carbene (rNHC) compex; on the contrary, this behavior could not be observed in protonated complex [Ru(phbnH)(phen)(2)](PF(6))(2) {[1H](PF(6))(2)}.


Subject(s)
NAD/chemistry , Organometallic Compounds/chemical synthesis , Protons , Ruthenium/chemistry , Crystallography, X-Ray , Electrochemical Techniques , Ethylamines , Kinetics , Ligands , Light , Magnetic Resonance Spectroscopy , Methane/analogs & derivatives , Methane/chemistry , Models, Molecular , Photochemical Processes , Stereoisomerism , Thermodynamics
11.
Inorg Chem ; 51(9): 5386-92, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22524515

ABSTRACT

Photoisomeric transformations in ruthenium polypyridyl complexes have been rarely reported. Herein we report the geometrical transformation of cyclometalated trans-[Ru(tpy)(PAD)(OH(2))](+) ([1](+)) to the cis-[Ru(tpy)(PAD)(OH(2))](+) ([1a](+)) (tpy = 2,2';6',2"-terpyridine, PAD = 2-(pyrid-2'-yl)acridine) isomer upon irradiation of visible light (λ ≥420 nm). Due to a proton-induced tautomeric equilibrium between the Ru-C bond and Ru═C coordination, the π* energy levels of PADH are lower than those of tpy by 12.61 and 12.24 kcal mol(-1), respectively, in [1](+) and [1a](+). Isomers [1](+) and [1a](+) both act as catalytic oxygen-evolving complexes (OECs) chemically as well as electrochemically.

12.
Inorg Chem ; 50(21): 10718-23, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21955318

ABSTRACT

Cyclometalated Ru(II) complexes having a 3-phenylbenzo[b][1,6]naphthyridine (phbn) ligand have been synthesized and characterized by spectroscopic methods. The photo- and electrochemical redox behavior of the complexes are demonstrated. Complex [Ru(phbn)(bpy)(2)]PF(6) ([1]PF(6)) readily undergoes proton coupled two electron reduction by chemical, electrochemical, and photochemical methods to generate [Ru(phbnHH)(bpy)(2)]PF(6) ([1HH]PF(6)). The photochemical oxidation of [1HH]PF(6) was also observed in presence of p-chloranil.

13.
Inorg Chem ; 50(12): 5321-3, 2011 Jun 20.
Article in English | MEDLINE | ID: mdl-21615114

ABSTRACT

Cyclometalated ruthenium(II) complexes having acridine moieties have been synthesized and characterized by spectroscopic methods. Protonation of the acridine nitrogen of the ruthenium(II) complexes not only causes dynamic equilibrium with remote N-heterocyclic carbene Ru═C complexes but also generates the NAD(+)/NADH redox function driven by a proton-coupled two-electron transfer accompanying a reversible C-H bond formation in the pyridinium ring.


Subject(s)
Heterocyclic Compounds/chemistry , Methane/analogs & derivatives , NAD/chemistry , Organometallic Compounds/chemistry , Protons , Ruthenium/chemistry , Methane/chemistry , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Oxidation-Reduction , Stereoisomerism
14.
Inorg Chem ; 45(20): 7994-6, 2006 Oct 02.
Article in English | MEDLINE | ID: mdl-16999392

ABSTRACT

N-(2-Pyridylmethyl)pyridine-2-methylketimine (L1) was synthesized from equimolar quantities of (2-pyridyl)methylamine and 2-acetylpyridine. Methanolic solution of L1 reacted readily with Cu(NO3)2.3H2O in air, affording green solid of composition {[Cu(L2)(OH)(NO3)][Cu(L2)(NO3)2]}.2H2O, where L2 is 4'-(2-pyridyl)-2,2':6',2' '-terpyridine. Oxidation of the active methylene group of L1 to an imide and then condensation with 2-acetylpyridine involving a C-C bond-forming reaction, mediated by a Cu2+ ion, are the essential steps involved in the conversion of L1 to L2. L2 is isolated by extrusion of Cu2+ with EDTA(2-). The copper center in [Cu(L2)(OH)(NO3)] has a mer-N3O3 environment, and that in [Cu(L2)(NO3)2] has a distorted trigonal-bipyramidal geometry. Two H2O molecules held by C-H...O interactions are present in the predominantly hydrophobic channels of approximate cavity dimension 7.60 x 6.50 A created by aromatic rings through pi-pi interactions.


Subject(s)
Copper/chemistry , Nitrates/chemistry , Organometallic Compounds/chemical synthesis , Pyridines/chemical synthesis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Structure , Organometallic Compounds/chemistry , Pyridines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL