Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 14: 1161869, 2023.
Article in English | MEDLINE | ID: mdl-37449205

ABSTRACT

Introduction: Despite significant clinical advancement with the use of immune checkpoint blockade (ICB) in non-small cell lung cancer (NSCLC) there are still a major subset of patients that develop adaptive/acquired resistance. Understanding resistance mechanisms to ICB is critical to developing new therapeutic strategies and improving patient survival. The dynamic nature of the tumor microenvironment and the mutational load driving tumor immunogenicity limit the efficacy to ICB. Recent studies indicate that myeloid cells are drivers of ICB resistance. In this study we sought to understand which immune cells were contributing to resistance and if we could modify them in a way to improve response to ICB therapy. Results: Our results show that combination anti-PD-1/CTLA-4 produces an initial antitumor effect with evidence of an activated immune response. Upon extended treatment with anti-PD-1/CTLA-4 acquired resistance developed with an increase of the immunosuppressive populations, including T-regulatory cells, neutrophils and monocytes. Addition of anti-Ly6C blocking antibody to anti-PD-1/CTLA-4 was capable of completely reversing treatment resistance and restoring CD8 T cell activity in multiple KP lung cancer models and in the autochthonous lung cancer KrasLSL-G12D/p53fl/fl model. We found that there were higher classical Ly6C+ monocytes in anti-PD-1/CTLA-4 combination resistant tumors. B7 blockade illustrated the importance of dendritic cells for treatment efficacy of anti-Ly6C/PD-1/CTLA-4. We further determined that classical Ly6C+ monocytes in anti-PD-1/CTLA-4 resistant tumors are trafficked into the tumor via IFN-γ and the CCL2-CCR2 axis. Mechanistically we found that classical monocytes from ICB resistant tumors were unable to differentiate into antigen presenting cells and instead differentiated into immunosuppressive M2 macrophages or myeloid-derived suppressor cells (MDSC). Classical Ly6C+ monocytes from ICB resistant tumors had a decrease in both Flt3 and PU.1 expression that prevented differentiation into dendritic cells/macrophages. Conclusions: Therapeutically we found that addition of anti-Ly6C to the combination of anti-PD-1/CTLA-4 was capable of complete tumor eradication. Classical Ly6C+ monocytes differentiate into immunosuppressive cells, while blockade of classical monocytes drives dendritic cell differentiation/maturation to reinvigorate the anti-tumor T cell response. These findings support that immunotherapy resistance is associated with infiltrating monocytes and that controlling the differentiation process of monocytes can enhance the therapeutic potential of ICB.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Monocytes , CTLA-4 Antigen , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , Immunotherapy/methods , Tumor Microenvironment
2.
Nat Biomed Eng ; 6(10): 1180-1195, 2022 10.
Article in English | MEDLINE | ID: mdl-36229662

ABSTRACT

New antibiotics should ideally exhibit activity against drug-resistant bacteria, delay the development of bacterial resistance to them and be suitable for local delivery at desired sites of infection. Here, we report the rational design, via molecular-docking simulations, of a library of 17 candidate antibiotics against bone infection by wild-type and mutated bacterial targets. We screened this library for activity against multidrug-resistant clinical isolates and identified an antibiotic that exhibits potent activity against resistant strains and the formation of biofilms, decreases the chances of bacterial resistance and is compatible with local delivery via a bone-cement matrix. The antibiotic-loaded bone cement exhibited greater efficacy than currently used antibiotic-loaded bone cements against staphylococcal bone infections in rats. Potent and locally delivered antibiotic-eluting polymers may help address antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Bone Cements , Rats , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Prostheses and Implants
3.
JCI Insight ; 6(17)2021 09 08.
Article in English | MEDLINE | ID: mdl-34309585

ABSTRACT

Lack of sustained response to therapeutic agents in patients with KRAS-mutant lung cancer poses a major challenge and arises partly due to intratumor heterogeneity that defines phenotypically distinct tumor subpopulations. To attain better therapeutic outcomes, it is important to understand the differential therapeutic sensitivities of tumor cell subsets. Epithelial-mesenchymal transition is a biological phenomenon that can alter the state of cells along a phenotypic spectrum and cause transcriptional rewiring to produce distinct tumor cell subpopulations. We utilized functional shRNA screens, in in vitro and in vivo models, to identify and validate an increased dependence of mesenchymal tumor cells on cyclin-dependent kinase 4 (CDK4) for survival, as well as a mechanism of resistance to MEK inhibitors. High zinc finger E-box binding homeobox 1 levels in mesenchymal tumor cells repressed p21, leading to perturbed CDK4 pathway activity. Increased dependence on CDK4 rendered mesenchymal cancer cells particularly vulnerable to selective CDK4 inhibitors. Coadministration of CDK4 and MEK inhibitors in heterogeneous tumors effectively targeted different tumor subpopulations, subverting the resistance to either single-agent treatment.


Subject(s)
Cyclin-Dependent Kinase 4/genetics , Drug Resistance, Neoplasm/genetics , Lung Neoplasms/genetics , Mutation , Organic Cation Transport Proteins/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 4/metabolism , DNA, Neoplasm/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Knockout , Neoplasms, Experimental , Organic Cation Transport Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism
4.
Nat Commun ; 12(1): 2606, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33972557

ABSTRACT

Understanding resistance mechanisms to targeted therapies and immune checkpoint blockade in mutant KRAS lung cancers is critical to developing novel combination therapies and improving patient survival. Here, we show that MEK inhibition enhanced PD-L1 expression while PD-L1 blockade upregulated MAPK signaling in mutant KRAS lung tumors. Combined MEK inhibition with anti-PD-L1 synergistically reduced lung tumor growth and metastasis, but tumors eventually developed resistance to sustained combinatorial therapy. Multi-platform profiling revealed that resistant lung tumors have increased infiltration of Th17 cells, which secrete IL-17 and IL-22 cytokines to promote lung cancer cell invasiveness and MEK inhibitor resistance. Antibody depletion of IL-17A in combination with MEK inhibition and PD-L1 blockade markedly reduced therapy-resistance in vivo. Clinically, increased expression of Th17-associated genes in patients treated with PD-1 blockade predicted poorer overall survival and response in melanoma and predicated poorer response to anti-PD1 in NSCLC patients. Here we show a triple combinatorial therapeutic strategy to overcome resistance to combined MEK inhibitor and PD-L1 blockade.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Th17 Cells/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/immunology , Drug Synergism , Female , Humans , Immune Checkpoint Inhibitors/immunology , Immunohistochemistry , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/immunology , Neoplasm Metastasis , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/metabolism , Th17 Cells/immunology , Tumor Suppressor Protein p53/metabolism
5.
Sci Rep ; 11(1): 3171, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542283

ABSTRACT

As a 3D bioprinting technique, hydrogel stereolithography has historically been limited in its ability to capture the spatial heterogeneity that permeates mammalian tissues and dictates structure-function relationships. This limitation stems directly from the difficulty of preventing unwanted material mixing when switching between different liquid bioinks. Accordingly, we present the development, characterization, and application of a multi-material stereolithography bioprinter that provides controlled material selection, yields precise regional feature alignment, and minimizes bioink mixing. Fluorescent tracers were first used to highlight the broad design freedoms afforded by this fabrication strategy, complemented by morphometric image analysis to validate architectural fidelity. To evaluate the bioactivity of printed gels, 344SQ lung adenocarcinoma cells were printed in a 3D core/shell architecture. These cells exhibited native phenotypic behavior as evidenced by apparent proliferation and formation of spherical multicellular aggregates. Cells were also printed as pre-formed multicellular aggregates, which appropriately developed invasive protrusions in response to hTGF-ß1. Finally, we constructed a simplified model of intratumoral heterogeneity with two separate sub-populations of 344SQ cells, which together grew over 14 days to form a dense regional interface. Together, these studies highlight the potential of multi-material stereolithography to probe heterotypic interactions between distinct cell types in tissue-specific microenvironments.

6.
Cancer Res ; 81(5): 1398-1412, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33402388

ABSTRACT

The epithelial-to-mesenchymal transition (EMT) is a dynamic epigenetic reprogramming event that occurs in a subset of tumor cells and is an initiating step toward invasion and distant metastasis. The process is reversible and gives plasticity to cancer cells to survive under variable conditions, with the acquisition of cancer stem cell-like characteristics and features such as drug resistance. Therefore, understanding survival dependencies of cells along the phenotypic spectrum of EMT will provide better strategies to target the spatial and temporal heterogeneity of tumors and prevent their ability to bypass single-inhibitor treatment strategies. To address this, we integrated the data from a selective drug screen in epithelial and mesenchymal KRAS/p53 (KP)-mutant lung tumor cells with separate datasets including reverse-phase protein array and an in vivo shRNA dropout screen. These orthogonal approaches identified AXL and MEK as potential mesenchymal and epithelial cell survival dependencies, respectively. To capture the dynamicity of EMT, incorporation of a dual fluorescence EMT sensor system into murine KP lung cancer models enabled real-time analysis of the epigenetic state of tumor cells and assessment of the efficacy of single agent or combination treatment with AXL and MEK inhibitors. Both two- and three-dimensional culture systems and in vivo models revealed that this combination treatment strategy of MEK plus AXL inhibition synergistically killed lung cancer cells by specifically targeting each phenotypic subpopulation. In conclusion, these results indicate that cotargeting the specific vulnerabilities of EMT subpopulations can prevent EMT-mediated drug resistance, effectively controlling tumor cell growth and metastasis. SIGNIFICANCE: This study shows that a novel combination of MEK and AXL inhibitors effectively bypasses EMT-mediated drug resistance in KRAS/p53-mutant non-small cell lung cancer by targeting EMT subpopulations, thereby preventing tumor cell survival.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , A549 Cells , Animals , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacology , Benzocycloheptenes/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor/methods , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/physiology , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Inbred Strains , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Triazoles/pharmacology , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
7.
Sci Rep ; 9(1): 4819, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894630

ABSTRACT

Lung cancer is the foremost cause of cancer related deaths in the U.S. It is a heterogeneous disease composed of genetically and phenotypically distinct tumor cells surrounded by heterotypic cells and extracellular matrix dynamically interacting with the tumor cells. Research in lung cancer is often restricted to patient-derived tumor specimens, in vitro cell cultures and limited animal models, which fail to capture the cellular or microenvironment heterogeneity of the tumor. Therefore, our knowledge is primarily focused on cancer-cell autonomous aberrations. For a fundamental understanding of lung cancer progression and an exploration of therapeutic options, we focused our efforts to develop an Ex Vivo Tumor platform to culture tumors in 3D matrices, which retains tumor cell heterogeneity arising due to in vivo selection pressure and environmental influences and recapitulate responses of tumor cells to external manipulations. To establish this model, implanted syngeneic murine tumors from a mutant KRAS/p53 model were harvested to yield multicellular tumor aggregates followed by culture in 3D extracellular matrices. Using this system, we identified Src signaling as an important driver of invasion and metastasis in lung cancer and demonstrate that EVTs are a robust experimental tool bridging the gap between conventional in vitro and in vivo models.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Epithelial-Mesenchymal Transition/genetics , Genes, src/genetics , Lung Neoplasms/genetics , Neoplasm Invasiveness/genetics , Neoplasm Metastasis/genetics , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Culture Techniques , Cell Line, Tumor , Extracellular Matrix/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/pathology , Mice , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , Rats , Signal Transduction/genetics , Spheroids, Cellular/pathology , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL