Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Article in English | MEDLINE | ID: mdl-39178024

ABSTRACT

The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, as well as the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as PECAM-1, the extracellular glycocalyx and its components, and ion channels such as Piezo1. We delineate which molecules are truly mechanosenstive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.

2.
J Appl Physiol (1985) ; 137(3): 527-539, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38867666

ABSTRACT

Obstructive sleep apnea (OSA), characterized by episodes of intermittent hypoxia (IH), is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, whether IH serves as an independent risk factor for AAA development remains to be investigated. Here, we determined the effects of chronic (6 mo) IH on angiotensin (Ang II)-induced AAA development in C57BL/6J male mice and investigated the underlying mechanisms of IH in cultured vascular smooth muscle cells (SMCs). IH increased the susceptibility of mice to develop AAA in response to Ang II infusion by facilitating the augmentation of the abdominal aorta's diameter as assessed by transabdominal ultrasound imaging. Importantly, IH with Ang II augmented aortic elastin degradation and the expression of matrix metalloproteinases (MMPs), mainly MMP8, MMP12, and a disintegrin and metalloproteinase-17 (ADAM17) as measured by histology and immunohistochemistry. Mechanistically, IH increased the activities of MMP2, MMP8, MMP9, MMP12, and ADAM17, while reducing the expression of the MMP regulator reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in cultured SMCs. Aortic samples from human AAA were associated with decreased RECK and increased expression of ADAM17 and MMPs. These data suggest that IH facilitates AAA development when additional stressors are superimposed and that this occurs in association with an increased presence of aortic MMPs and ADAM17, potentially due to IH-induced modulation of RECK expression. These findings support a plausible synergistic link between OSA and AAA and provide a better understanding of the molecular mechanisms underlying the pathogenesis of AAA.NEW & NOTEWORTHY IH facilitates Ang II-induced abdominal aortic diameter expansion and AAA development in C57BL/6J male mice. IH upregulates the expression of specific MMPs such as MMP8, MMP12, and ADAM17. IH directly suppresses RECK expression and increases MMPs activity in SMCs. Human AAA tissues exhibit a downregulation of RECK and an upregulation of ADAM17 and MMPs.


Subject(s)
ADAM17 Protein , Angiotensin II , Aorta, Abdominal , Aortic Aneurysm, Abdominal , Hypoxia , Mice, Inbred C57BL , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/pathology , Animals , Male , Hypoxia/metabolism , Hypoxia/complications , Mice , ADAM17 Protein/metabolism , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Myocytes, Smooth Muscle/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Humans , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinase 12/metabolism , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/complications
3.
Am J Physiol Heart Circ Physiol ; 327(1): H000, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38787381

ABSTRACT

Systemic insulin increases muscle sympathetic nerve activity (MSNA) via both central actions within the brainstem and peripheral activation of the arterial baroreflex. Augmented MSNA during hyperinsulinemia likely restrains peripheral vasodilation and contributes to the maintenance of blood pressure (BP). However, in the absence of insulin action within the peripheral vasculature, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans remains unknown. Herein, we hypothesized intranasal insulin administration would increase MSNA and BP in healthy young adults. Participants were assigned to time control [TC, n = 13 (5 females/8 males), 28 ± 1 yr] or 160 IU of intranasal insulin administered over 5 min [n = 15 (5 females/10 males), 26 ± 2 yr]; five (1 female/4 males) participants completed both conditions. MSNA (fibular microneurography), BP (finger photoplethysmography), and leg blood flow (LBF, femoral Doppler ultrasound) were assessed at baseline, and 15 and 30 min following insulin administration. Leg vascular conductance [LVC = (LBF ÷ mean BP) × 100] was calculated. Venous insulin and glucose concentrations remained unchanged throughout (P > 0.05). Following intranasal insulin administration, MSNA (burst frequency; baseline = 100%; minute 15, 121 ± 8%; minute 30, 118 ± 6%; P = 0.009, n = 7) and mean BP (baseline = 100%; minute 15, 103 ± 1%; minute 30, 102 ± 1%; P = 0.003) increased, whereas LVC decreased (baseline = 100%; minute 15, 93 ± 3%; minute 30, 99 ± 3%; P = 0.03). In contrast, MSNA, mean BP, and LVC were unchanged in TC participants (P > 0.05). We provide the first evidence that intranasal insulin administration in healthy young adults acutely increases MSNA and BP and decreases LVC. These results enhance mechanistic understanding of the sympathetic and peripheral hemodynamic response to insulin.NEW & NOTEWORTHY Systemic insulin increases muscle sympathetic nerve activity (MSNA) via central actions within the brainstem and peripheral activation of the arterial baroreflex. In the absence of peripheral insulin action, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans was unknown. We provide the first evidence that intranasal insulin administration increases MSNA and blood pressure and reduces leg vascular conductance. These results enhance mechanistic understanding of the sympathetic and hemodynamic response to insulin.


Subject(s)
Administration, Intranasal , Insulin , Muscle, Skeletal , Sympathetic Nervous System , Humans , Male , Female , Insulin/administration & dosage , Insulin/blood , Sympathetic Nervous System/drug effects , Adult , Muscle, Skeletal/innervation , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Blood Pressure/drug effects , Regional Blood Flow/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Healthy Volunteers , Young Adult , Baroreflex/drug effects
4.
Am J Physiol Heart Circ Physiol ; 326(3): H760-H771, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38241008

ABSTRACT

Increased sitting time, the most common form of sedentary behavior, is an independent risk factor for all-cause and cardiovascular disease mortality; however, the mechanisms linking sitting to cardiovascular risk remain largely elusive. Studies over the last decade have led to the concept that excessive time spent in the sitting position and the ensuing reduction in leg blood flow-induced shear stress cause endothelial dysfunction. This conclusion has been mainly supported by studies using flow-mediated dilation in the lower extremities as the measured outcome. In this review, we summarize evidence from classic studies and more recent ones that collectively support the notion that prolonged sitting-induced leg vascular dysfunction is likely also attributable to changes occurring in vascular smooth muscle cells (VSMCs). Indeed, we provide evidence that prolonged constriction of resistance arteries can lead to modifications in the structural characteristics of the vascular wall, including polymerization of actin filaments in VSMCs and inward remodeling, and that these changes manifest in a time frame that is consistent with the vascular changes observed with prolonged sitting. We expect this review will stimulate future studies with a focus on VSMC cytoskeletal remodeling as a potential target to prevent the detrimental vascular ramifications of too much sitting.


Subject(s)
Sitting Position , Vascular Diseases , Humans , Leg/blood supply , Posture/physiology , Endothelium, Vascular , Lower Extremity/blood supply , Vasodilation/physiology
5.
Am J Physiol Heart Circ Physiol ; 326(1): H270-H277, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37999645

ABSTRACT

Endothelial insulin resistance represents a causal factor in the pathogenesis of type 2 diabetes (T2D) and vascular disease, thus the need to identify molecular mechanisms underlying defects in endothelial insulin signaling. We previously have shown that a disintegrin and metalloproteinase-17 (ADAM17) is increased while insulin receptor α-subunit (IRα) is decreased in the vasculature of patients with T2D, leading to impaired insulin-induced vasodilation. We have also demonstrated that ADAM17 sheddase activity targets IRα; however, the mechanisms driving endothelial ADAM17 activity in T2D are largely unknown. Herein, we report that externalization of phosphatidylserine (PS) to the outer leaflet of the plasma membrane causes ADAM17-mediated shedding of IRα and blunting of insulin signaling in endothelial cells. Furthermore, we demonstrate that endothelial PS externalization is mediated by the phospholipid scramblase anoctamin-6 (ANO6) and that this process can be stimulated by neuraminidase, a soluble enzyme that cleaves sialic acid residues. Of note, we demonstrate that men and women with T2D display increased levels of neuraminidase activity in plasma, relative to age-matched healthy individuals, and this occurs in conjunction with increased ADAM17 activity and impaired leg blood flow responses to endogenous insulin. Collectively, this work reveals the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.NEW & NOTEWORTHY This work provides the first evidence that neuraminidase, an enzyme increased in the circulation of men and women with type 2 diabetes (T2D), promotes anoctamin-6 (ANO6)-dependent externalization of phosphatidylserine in endothelial cells, which in turn leads to activation of a disintegrin and metalloproteinase-17 (ADAM17) and consequent shedding of the insulin receptor-α from the cell surface. Hence, this work supports that consideration should be given to the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Male , Humans , Female , Endothelial Cells/metabolism , Receptor, Insulin/metabolism , Phosphatidylserines/metabolism , Neuraminidase/metabolism , Insulin/metabolism , Disintegrins , ADAM17 Protein/metabolism , Anoctamins/metabolism
6.
Am J Physiol Heart Circ Physiol ; 325(6): H1337-H1353, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37801046

ABSTRACT

Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Vascular Diseases , Mice , Humans , Animals , Zanamivir/pharmacology , Neuraminidase/chemistry , Neuraminidase/pharmacology , Endothelial Cells , Diabetes Mellitus, Type 2/drug therapy , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology
8.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R536-R546, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36802950

ABSTRACT

Insulin acts centrally to stimulate sympathetic vasoconstrictor outflow to skeletal muscle and peripherally to promote vasodilation. Given these divergent actions, the "net effect" of insulin on the transduction of muscle sympathetic nerve activity (MSNA) into vasoconstriction and thus, blood pressure (BP) remains unclear. We hypothesized that sympathetic transduction to BP would be attenuated during hyperinsulinemia compared with baseline. In 22 young healthy adults, MSNA (microneurography), and beat-to-beat BP (Finometer or arterial catheter) were continuously recorded, and signal-averaging was performed to quantify the mean arterial pressure (MAP) and total vascular conductance (TVC; Modelflow) responses following spontaneous bursts of MSNA at baseline and during a euglycemic-hyperinsulinemic clamp. Hyperinsulinemia significantly increased MSNA burst frequency and mean burst amplitude (baseline: 46 ± 6 au; insulin: 65 ± 16 au, P < 0.001) but did not alter MAP. The peak MAP (baseline: 3.2 ± 1.5 mmHg; insulin: 3.0 ± 1.9 mmHg, P = 0.67) and nadir TVC (P = 0.45) responses following all MSNA bursts were not different between conditions indicating preserved sympathetic transduction. However, when MSNA bursts were segregated into quartiles based on their amplitudes at baseline and compared with similar amplitude bursts during hyperinsulinemia, the peak MAP and TVC responses were blunted (e.g., largest burst quartile: MAP, baseline: Δ4.4 ± 1.7 mmHg; hyperinsulinemia: Δ3.0 ± 0.8 mmHg, P = 0.02). Notably, ∼15% of bursts during hyperinsulinemia exceeded the size of any burst at baseline, yet the MAP/TVC responses to these larger bursts (MAP, Δ4.9 ± 1.4 mmHg) did not differ from the largest baseline bursts (P = 0.47). These findings indicate that increases in MSNA burst amplitude contribute to the overall maintenance of sympathetic transduction during hyperinsulinemia.


Subject(s)
Arterial Pressure , Hyperinsulinism , Humans , Adult , Blood Pressure/physiology , Vasoconstrictor Agents , Insulin , Muscle, Skeletal/innervation , Sympathetic Nervous System , Heart Rate/physiology
9.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R293-R304, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36622084

ABSTRACT

Vascular insulin resistance, a major characteristic of obesity and type 2 diabetes (T2D), manifests with blunting of insulin-induced vasodilation. Although there is evidence that females are more whole body insulin sensitive than males in the healthy state, whether sex differences exist in vascular insulin sensitivity is unclear. Also uncertain is whether weight loss can reestablish vascular insulin sensitivity in T2D. The purpose of this investigation was to 1) establish if sex differences in vasodilatory responses to insulin exist in absence of disease, 2) determine whether female sex affords protection against the development of vascular insulin resistance with long-term overnutrition and obesity, and 3) examine if diet-induced weight loss can restore vascular insulin sensitivity in men and women with T2D. First, we show in healthy mice and humans that sex does not influence insulin-induced femoral artery dilation and insulin-stimulated leg blood flow, respectively. Second, we provide evidence that female mice are protected against impairments in insulin-induced dilation caused by overnutrition-induced obesity. Third, we show that men and women exhibit comparable levels of vascular insulin resistance when T2D develops but that diet-induced weight loss is effective at improving insulin-stimulated leg blood flow, particularly in women. Finally, we provide indirect evidence that these beneficial effects of weight loss may be mediated by a reduction in endothelin-1. In aggregate, the present data indicate that female sex confers protection against obesity-induced vascular insulin resistance and provide supportive evidence that, in women with T2D, vascular insulin resistance can be remediated with diet-induced weight loss.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Female , Male , Mice , Animals , Insulin Resistance/physiology , Insulin , Obesity , Weight Loss , Femoral Artery , Diet
10.
Am J Physiol Heart Circ Physiol ; 323(6): H1231-H1238, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36331555

ABSTRACT

Insulin resistance in the vasculature is a hallmark of type 2 diabetes (T2D), and blunting of insulin-induced vasodilation is its primary consequence. Individuals with T2D exhibit a marked impairment in insulin-induced dilation in resistance arteries across vascular beds. Importantly, reduced insulin-stimulated vasodilation and blood flow to skeletal muscle limits glucose uptake and contributes to impaired glucose control in T2D. The study of mechanisms responsible for the suppressed vasodilatory effects of insulin has been a growing topic of interest for not only its association with glucose control and extension to T2D but also its relationship with cardiovascular disease development and progression. In this mini-review, we integrate findings from recent studies by our group with the existing literature focused on the mechanisms underlying endothelial insulin resistance in T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Insulin Resistance/physiology , Blood Glucose , Insulin/pharmacology , Vasodilation , Muscle, Skeletal
11.
Front Physiol ; 13: 920675, 2022.
Article in English | MEDLINE | ID: mdl-36213237

ABSTRACT

White adipose tissue (WAT) dysfunction independently predicts cardiometabolic disease, yet there is a lack of effective adipocyte-targeting therapeutics. B3AR agonists enhance adipocyte mitochondrial function and hold potential in this regard. Based on enhanced sensitivity to B3AR-mediated browning in estrogen receptor (ER)alpha-null mice, we hypothesized that ERß may enhance the WAT response to the B3AR ligand, CL316,243 (CL). Methods: Male and female wild-type (WT) and ERß DNA binding domain knock-out (ERßDBDKO) mice fed high-fat diet (HFD) to induce obesity were administered CL (1 mg/kg) daily for 2 weeks. Systemic physiological assessments of body composition (EchoMRI), bioenergetics (metabolic chambers), adipocyte mitochondrial respiration (oroboros) and glucose tolerance were performed, alongside perigonadal (PGAT), subcutaneous (SQAT) and brown adipose tissue (BAT) protein expression assessment (Western blot). Mechanisms were tested in vitro using primary adipocytes isolated from WT mice, and from Esr2-floxed mice in which ERß was knocked down. Statistical analyses were performed using 2 × 2 analysis of variance (ANOVA) for main effects of genotype (G) and treatment (T), as well as GxT interactions; t-tests were used to determine differences between in vitro treatment conditions (SPSS V24). Results: There were no genotype differences in HFD-induced obesity or systemic rescue effects of CL, yet ERßDBDKO females were more sensitive to CL-induced increases in energy expenditure and WAT UCP1 induction (GxT, p < 0.05), which coincided with greater WAT B3AR protein content among the KO (G, p < 0.05). Among males, who were more insulin resistant to begin with (no genotype differences before treatment), tended to be more sensitive to CL-mediated reduction in insulin resistance. With sexes combined, basal WAT mitochondrial respiration trended toward being lower in the ERßDBDKO mice, but this was completely rescued by CL (p < 0.05). Confirming prior work, CL increased adipose tissue ERß protein (T, p < 0.05, all), an effect that was enhanced in WAT and BAT the female KO (GxT, p < 0.01). In vitro experiments indicated that an inhibitor of ERß genomic function (PHTPP) synergized with CL to further increase UCP1 mRNA (p = 0.043), whereas full ERß protein was required for UCP1 expression (p = 0.042). Conclusion: Full ERß activity appears requisite and stimulatory for UCP1 expression via a mechanism involving non-classical ERß signaling. This novel discovery about the role of ERß in adipocyte metabolism may have important clinical applications.

12.
J Appl Physiol (1985) ; 133(5): 1228-1236, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36227166

ABSTRACT

Myogenic and flow-induced reactivity contribute to cerebral autoregulation, with potentially divergent roles for smaller versus larger arteries. The present study tested the hypotheses that compared with first-order (1A) branches of the middle cerebral artery, second- and third-order branches (2A and 3A, respectively) exhibit greater myogenic reactivity but reduced flow-induced constriction. Furthermore, nitric oxide synthase (NOS) inhibition may amplify myogenic reactivity and abolish instances of flow-induced dilation. Isolated porcine cerebral arteries mounted in a pressure myograph were exposed to incremental increases in intraluminal pressure (40-120 mmHg; n = 41) or flow (1-1,170 µL/min; n = 31). Intraluminal flows were adjusted to achieve 5, 10, 20, and 40 dyn/cm2 of wall shear stress at 60 mmHg. Myogenic tone was greater in 3A versus 1A arteries (P < 0.05). There was an inverse relationship between myogenic reactivity and passive arterial diameter (P < 0.01). NOS inhibition increased basal tone to a lesser extent in 3A versus 1A arteries (P < 0.01) but did not influence myogenic reactivity (P = 0.49). Increasing flow decreased luminal diameter (P ≤ 0.01), with increased vasoconstriction at 10-40 dyn/cm2 of shear stress (P < 0.01). However, relative responses were similar between 1A, 2A, and 3A arteries (P = 0.40) with and without NOS inhibition conditions (P ≥ 0.29). Whereas NOS inhibition increases basal myogenic tone, and myogenic reactivity was less in smaller versus larger arteries (range = ∼100-550 µM), neither NOS inhibition nor luminal diameter influences flow-induced constriction in porcine cerebral arteries.NEW & NOTEWORTHY This study demonstrated size-dependent heterogeneity in myogenic reactivity in porcine cerebral arteries. Smaller branches of the middle cerebral artery exhibited increased myogenic reactivity, but attenuated NOS-dependent increases in myogenic tone compared with larger branches. Flow-dependent regulation does not exhibit the same variation; diameter-independent flow-induced vasoconstrictions occur across all branch orders and are not affected by NOS inhibition. Conceptually, flow-induced vasoconstriction contributes to cerebral autoregulation, particularly in larger arteries with low myogenic tone.


Subject(s)
Middle Cerebral Artery , Nitric Oxide , Swine , Animals , Enzyme Inhibitors/pharmacology , Nitric Oxide Synthase , Vasoconstriction/physiology
13.
Am J Physiol Heart Circ Physiol ; 323(5): H879-H891, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36083795

ABSTRACT

Adropin is a peptide largely secreted by the liver and known to regulate energy homeostasis; however, it also exerts cardiovascular effects. Herein, we tested the hypothesis that low circulating levels of adropin in obesity and type 2 diabetes (T2D) contribute to arterial stiffening. In support of this hypothesis, we report that obesity and T2D are associated with reduced levels of adropin (in liver and plasma) and increased arterial stiffness in mice and humans. Establishing causation, we show that mesenteric arteries from adropin knockout mice are also stiffer, relative to arteries from wild-type counterparts, thus recapitulating the stiffening phenotype observed in T2D db/db mice. Given the above, we performed a set of follow-up experiments, in which we found that 1) exposure of endothelial cells or isolated mesenteric arteries from db/db mice to adropin reduces filamentous actin (F-actin) stress fibers and stiffness, 2) adropin-induced reduction of F-actin and stiffness in endothelial cells and db/db mesenteric arteries is abrogated by inhibition of nitric oxide (NO) synthase, and 3) stimulation of smooth muscle cells or db/db mesenteric arteries with a NO mimetic reduces stiffness. Lastly, we demonstrated that in vivo treatment of db/db mice with adropin for 4 wk reduces stiffness in mesenteric arteries. Collectively, these findings indicate that adropin can regulate arterial stiffness, likely via endothelium-derived NO, and thus support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.NEW & NOTEWORTHY Arterial stiffening, a characteristic feature of obesity and type 2 diabetes (T2D), contributes to the development and progression of cardiovascular diseases. Herein we establish that adropin is decreased in obese and T2D models and furthermore provide evidence that reduced adropin may directly contribute to arterial stiffening. Collectively, findings from this work support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Vascular Stiffness , Actins , Animals , Endothelial Cells , Humans , Mesenteric Arteries , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide , Nitric Oxide Synthase , Obesity/complications , Peptides/pharmacology , Vascular Stiffness/physiology
14.
Am J Physiol Heart Circ Physiol ; 323(4): H688-H701, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36018759

ABSTRACT

Inflammation and vascular insulin resistance are hallmarks of type 2 diabetes (T2D). However, several potential mechanisms causing abnormal endothelial insulin signaling in T2D need further investigation. Evidence indicates that the activity of ADAM17 (a disintegrin and metalloproteinase-17) and the presence of insulin receptor (IR) in plasma are increased in subjects with T2D. Accordingly, we hypothesized that in T2D, increased ADAM17 activity sheds the IR ectodomain from endothelial cells and impairs insulin-induced vasodilation. We used small visceral arteries isolated from a cross-sectional study of subjects with and without T2D undergoing bariatric surgery, human cultured endothelial cells, and recombinant proteins to test our hypothesis. Here, we demonstrate that arteries from subjects with T2D had increased ADAM17 expression, reduced presence of tissue inhibitor of metalloproteinase-3 (TIMP3), decreased extracellular IRα, and impaired insulin-induced vasodilation versus those from subjects without T2D. In vitro, active ADAM17 cleaved the ectodomain of the IRß subunit. Endothelial cells with ADAM17 overexpression or exposed to the protein kinase-C activator, PMA, had increased ADAM17 activity, decreased IRα presence on the cell surface, and increased IR shedding. Moreover, pharmacological inhibition of ADAM17 with TAPI-0 rescued PMA-induced IR shedding and insulin-signaling impairments in endothelial cells and insulin-stimulated vasodilation in human arteries. In aggregate, our findings suggest that ADAM17-mediated shedding of IR from the endothelial surface impairs insulin-mediated vasodilation. Thus, we propose that inhibition of ADAM17 sheddase activity should be considered a strategy to restore vascular insulin sensitivity in T2D.NEW & NOTEWORTHY To our knowledge, this is the first study to investigate the involvement of ADAM17 in causing impaired insulin-induced vasodilation in T2D. We provide evidence that ADAM17 activity is increased in the vasculature of patients with T2D and support the notion that ADAM17-mediated shedding of endothelial IRα ectodomains is a novel mechanism causing vascular insulin resistance. Our results highlight that targeting ADAM17 activity may be a potential therapeutic strategy to correct vascular insulin resistance in T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Cross-Sectional Studies , Diabetes Mellitus, Type 2/metabolism , Disintegrins , Endothelial Cells/metabolism , Humans , Insulin/metabolism , Receptor, Insulin/metabolism , Recombinant Proteins/metabolism , Tissue Inhibitor of Metalloproteinase-3/metabolism
15.
Compr Physiol ; 12(4): 3781-3811, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35997082

ABSTRACT

The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.


Subject(s)
Glycocalyx , Mechanotransduction, Cellular , Endothelium, Vascular/physiology , Glycocalyx/metabolism , Glycocalyx/pathology , Heparitin Sulfate/metabolism , Humans , Mechanotransduction, Cellular/physiology , Stress, Mechanical
16.
Endocrinology ; 163(11)2022 10 11.
Article in English | MEDLINE | ID: mdl-35974454

ABSTRACT

Vascular insulin resistance is a feature of obesity and type 2 diabetes that contributes to the genesis of vascular disease and glycemic dysregulation. Data from preclinical models indicate that vascular insulin resistance is an early event in the disease course, preceding the development of insulin resistance in metabolically active tissues. Whether this is translatable to humans requires further investigation. To this end, we examined if vascular insulin resistance develops when young healthy individuals (n = 18 men, n = 18 women) transition to an obesogenic lifestyle that would ultimately cause whole-body insulin resistance. Specifically, we hypothesized that short-term (10 days) exposure to reduced ambulatory activity (from >10 000 to <5000 steps/day) and increased consumption of sugar-sweetened beverages (6 cans/day) would be sufficient to prompt vascular insulin resistance. Furthermore, given that incidence of insulin resistance and cardiovascular disease is lower in premenopausal women than in men, we postulated that young females would be protected against vascular insulin resistance. Consistent with this hypothesis, we report that after reduced ambulation and increased ingestion of carbonated beverages high in sugar, young healthy men, but not women, exhibited a blunted leg blood flow response to insulin and suppressed skeletal muscle microvascular perfusion. These findings were associated with a decrease in plasma adropin and nitrite concentrations. This is the first evidence in humans that vascular insulin resistance can be provoked by short-term adverse lifestyle changes. It is also the first documentation of a sexual dimorphism in the development of vascular insulin resistance in association with changes in adropin levels.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Blood Glucose , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/prevention & control , Female , Humans , Insulin , Life Style , Male , Nitrites
17.
Sleep ; 45(9)2022 09 08.
Article in English | MEDLINE | ID: mdl-35661901

ABSTRACT

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH) that is implicated in an increased risk of cardiovascular disease (i.e., coronary heart disease, CHD) and associated with increased overall and cardiac-specific mortality. Accordingly, we tested the hypothesis that experimental IH progressively impairs coronary vascular function and in vivo coronary flow reserve. METHODS: Male C57BL/6J mice (8-week-old) were exposed to IH (FiO2 21% 90 s-6% 90 s) or room air (RA; 21%) 12 h/day during the light cycle for 2, 6, 16, and 28 weeks. Coronary artery flow velocity reserve (CFVR) was measured at each time point using a Doppler system. After euthanasia, coronary arteries were micro-dissected and mounted on wire myograph to assess reactivity to acetylcholine (ACh) and sodium nitroprusside (SNP). RESULTS: Endothelium-dependent coronary relaxation to ACh was preserved after 2 weeks of IH (80.6 ± 7.8%) compared to RA (87.8 ± 7.8%, p = 0.23), but was significantly impaired after 6 weeks of IH (58.7 ± 16.2%, p = 0.02). Compared to ACh responses at 6 weeks, endothelial dysfunction was more pronounced in mice exposed to 16 weeks (48.2 ± 5.3%) but did not worsen following 28 weeks of IH (44.8 ± 11.6%). A 2-week normoxic recovery after a 6-week IH exposure reversed the ACh abnormalities. CFVR was significantly reduced after 6 (p = 0.0006) and 28 weeks (p < 0.0001) of IH when compared to controls. CONCLUSION: Chronic IH emulating the hypoxia-re-oxygenation cycles of moderate-to-severe OSA promotes coronary artery endothelial dysfunction and CFVR reductions in mice, which progressively worsen until reaching asymptote between 16 and 28 weeks. Normoxic recovery after 6 weeks exposure reverses the vascular abnormalities.


Subject(s)
Coronary Vessels , Sleep Apnea, Obstructive , Acetylcholine , Animals , Disease Models, Animal , Hypoxia/complications , Male , Mice , Mice, Inbred C57BL , Sleep Apnea, Obstructive/complications
18.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R43-R58, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35470695

ABSTRACT

Impaired endothelial insulin signaling and consequent blunting of insulin-induced vasodilation is a feature of type 2 diabetes (T2D) that contributes to vascular disease and glycemic dysregulation. However, the molecular mechanisms underlying endothelial insulin resistance remain poorly known. Herein, we tested the hypothesis that endothelial insulin resistance in T2D is attributed to reduced expression of heat shock protein 72 (HSP72). HSP72 is a cytoprotective chaperone protein that can be upregulated with heating and is reported to promote insulin sensitivity in metabolically active tissues, in part via inhibition of JNK activity. Accordingly, we further hypothesized that, in individuals with T2D, 7 days of passive heat treatment via hot water immersion to waist level would improve leg blood flow responses to an oral glucose load (i.e., endogenous insulin stimulation) via induction of endothelial HSP72. In contrast, we found that: 1) endothelial insulin resistance in T2D mice and humans was not associated with reduced HSP72 in aortas and venous endothelial cells, respectively; 2) after passive heat treatment, improved leg blood flow responses to an oral glucose load did not parallel with increased endothelial HSP72; and 3) downregulation of HSP72 (via small-interfering RNA) or upregulation of HSP72 (via heating) in cultured endothelial cells did not impair or enhance insulin signaling, respectively, nor was JNK activity altered. Collectively, these findings do not support the hypothesis that reduced HSP72 is a key driver of endothelial insulin resistance in T2D but provide novel evidence that lower-body heating may be an effective strategy for improving leg blood flow responses to glucose ingestion-induced hyperinsulinemia.


Subject(s)
Diabetes Mellitus, Type 2 , HSP72 Heat-Shock Proteins , Insulin Resistance , Animals , Diabetes Mellitus, Type 2/metabolism , Endothelial Cells/metabolism , Glucose/metabolism , HSP72 Heat-Shock Proteins/genetics , HSP72 Heat-Shock Proteins/metabolism , Insulin/metabolism , Mice
19.
Geroscience ; 44(3): 1657-1675, 2022 06.
Article in English | MEDLINE | ID: mdl-35426600

ABSTRACT

Aging of the vasculature is characterized by endothelial dysfunction and arterial stiffening, two key events in the pathogenesis of cardiovascular disease (CVD). Treatment with sodium glucose transporter 2 (SGLT2) inhibitors is now known to decrease cardiovascular morbidity and mortality in type 2 diabetes. However, whether SGLT2 inhibition attenuates vascular aging is unknown. We first confirmed in a cohort of adult subjects that aging is associated with impaired endothelial function and increased arterial stiffness and that these two variables are inversely correlated. Next, we investigated whether SGLT2 inhibition with empagliflozin (Empa) ameliorates endothelial dysfunction and reduces arterial stiffness in aged mice with confirmed vascular dysfunction. Specifically, we assessed mesenteric artery endothelial function and stiffness (via flow-mediated dilation and pressure myography mechanical responses, respectively) and aortic stiffness (in vivo via pulse wave velocity and ex vivo via atomic force microscopy) in Empa-treated (14 mg/kg/day for 6 weeks) and control 80-week-old C57BL/6 J male mice. We report that Empa-treated mice exhibited improved mesenteric endothelial function compared with control, in parallel with reduced mesenteric artery and aortic stiffness. Additionally, Empa-treated mice had greater vascular endothelial nitric oxide synthase activation, lower phosphorylated cofilin, and filamentous actin content, with downregulation of pathways involved in production of reactive oxygen species. Our findings demonstrate that Empa improves endothelial function and reduces arterial stiffness in a preclinical model of aging, making SGLT2 inhibition a potential therapeutic alternative to reduce the progression of CVD in older individuals.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Vascular Diseases , Actins/metabolism , Aged , Animals , Diabetes Mellitus, Type 2/drug therapy , Humans , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Pulse Wave Analysis , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
20.
Curr Diab Rep ; 22(4): 169-175, 2022 04.
Article in English | MEDLINE | ID: mdl-35247145

ABSTRACT

PURPOSE OF REVIEW: Herein, we summarize recent advances which provide new insights into the role of the autonomic nervous system in the control of blood flow and blood pressure during hyperinsulinemia. We also highlight remaining gaps in knowledge as it pertains to the translation of findings to relevant human chronic conditions such as obesity, insulin resistance, and type 2 diabetes. RECENT FINDINGS: Our findings in insulin-sensitive adults show that increases in muscle sympathetic nerve activity with hyperinsulinemia do not result in greater sympathetically mediated vasoconstriction in the peripheral circulation. Both an attenuation of α-adrenergic-receptor vasoconstriction and augmented ß-adrenergic vasodilation in the setting of high insulin likely explain these findings. In the absence of an increase in sympathetically mediated restraint of peripheral vasodilation during hyperinsulinemia, blood pressure is supported by increases in cardiac output in insulin-sensitive individuals. We highlight a dynamic interplay between central and peripheral mechanisms during hyperinsulinemia to increase sympathetic nervous system activity and maintain blood pressure in insulin-sensitive adults. Whether these results translate to the insulin-resistant condition and implications for long-term cardiovascular regulation warrants further exploration.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Adrenergic Agents/pharmacology , Adult , Blood Pressure , Humans , Insulin , Insulin Resistance/physiology , Obesity , Sympathetic Nervous System
SELECTION OF CITATIONS
SEARCH DETAIL