Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 215(1): 489-499, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28467616

ABSTRACT

Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open-vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non-invasive measurement of embolism on intact olive plants by X-ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X-Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below -4.0 MPa, reaching 50% loss of hydraulic conductivity at -5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.


Subject(s)
Olea/physiology , Plant Diseases , Xylem/physiology , Water/metabolism , Xylem/metabolism
2.
Ecology ; 97(10): 2603-2615, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27859124

ABSTRACT

Although the functional basis of variable and synchronous seed production (masting behavior) has been extensively investigated, only recently has attention been focused on the proximate mechanisms driving this phenomenon. We analyzed the relationship between weather and acorn production in 15 species of oaks (genus Quercus) from three geographic regions on two continents, with the goals of determining the extent to which similar sets of weather factors affect masting behavior across species and to explore the ecological basis for the similarities detected. Lag-1 temporal autocorrelations were predominantly negative, supporting the hypothesis that stored resources play a role in masting behavior across this genus, and we were able to determine environmental variables correlating with acorn production in all but one of the species. Standard weather variables outperformed "differential-cue" variables based on the difference between successive years in a majority of species, which is consistent with the hypothesis that weather is linked directly to the proximate mechanism driving seed production and that masting in these species is likely to be sensitive to climate change. Based on the correlations between weather variables and acorn production, cluster analysis failed to generate any obvious groups of species corresponding to phylogeny or life-history. Discriminant function analyses, however, were able to identify the phylogenetic section to which the species belonged and, controlling for phylogeny, the length of time species required to mature acorns, whether they were evergreen or deciduous, and, to a lesser extent, the geographic region to which they are endemic. These results indicate that similar proximate mechanisms are driving acorn production in these species of oaks, that the environmental factors driving seed production in oaks are to some extent phylogenetically conserved, and that the shared mechanisms driving acorn production result in some degree of synchrony among coexisting species in a way that potentially enhances predator satiation, at least when they have acorns requiring the same length of time to mature.


Subject(s)
Phylogeny , Quercus , Weather , Climate Change , Seeds
3.
PLoS One ; 9(12): e115371, 2014.
Article in English | MEDLINE | ID: mdl-25532130

ABSTRACT

Mast-seeding species exhibit not only a large inter-annual variability in seed production but also considerable variability among individuals within the same year. However, very little is known about the causes and consequences for population dynamics of this potentially large between-individual variability. Here, we quantified seed production over ten consecutive years in two Mediterranean oak species - the deciduous Quercus canariensis and the evergreen Q. suber - that coexist in forests of southern Spain. First, we calibrated likelihood models to identify which abiotic and biotic variables best explain the magnitude (hereafter seed productivity) and temporal variation of seed production at the individual level (hereafter CVi), and infer whether reproductive effort results from the available soil resources for the plant or is primarily determined by selectively favoured strategies. Second, we explored the contribution of between-individual variability in seed production as a potential mechanism of satiation for predispersal seed predators. We found that Q. canariensis trees inhabiting moister and more fertile soils were more productive than those growing in more resource-limited sites. Regarding temporal variation, individuals of the two studied oak species inhabiting these resource-rich environments also exhibited larger values of CVi. Interestingly, we detected a satiating effect on granivorous insects at the tree level in Q. suber, which was evident in those years where between-individual variability in acorn production was higher. These findings suggest that individual seed production (both in terms of seed productivity and inter-annual variability) is strongly dependent on soil resource heterogeneity (at least for one of the two studied oak species) with potential repercussions for recruitment and population dynamics. However, other external factors (such as soil heterogeneity in pathogen abundance) or certain inherent characteristics of the tree might be also involved in this process.


Subject(s)
Agriculture , Quercus/growth & development , Seeds , Soil/chemistry , Ecosystem , Population Dynamics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...