Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Crit Rev Microbiol ; : 1-22, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37897442

ABSTRACT

Helicobacter pylori is a gram-negative, spiral-shaped, flagellated bacterium that colonizes the stomach of half the world's population. Helicobacter pylori infection causes pathologies of varying severity. Standard oral therapy fails in 15-20% since the barriers of the oral route decrease the bioavailability of antibiotics and the intrinsic factors of bacteria increase the rates of resistance. Nanoparticles and microparticles are promising strategies for drug delivery into the gastric mucosa and targeting H. pylori. The variety of building blocks creates systems with distinct colloidal, surface, and biological properties. These features improve drug-pathogen interactions, eliminate drug depletion and overuse, and enable the association of multiple actives combating H. pylori on several fronts. Nanoparticles and microparticles are successfully used to overcome the barriers of the oral route, physicochemical inconveniences, and lack of selectivity of current therapy. They have proven efficient in employing promising anti-H. pylori compounds whose limitation is oral route instability, such as some antibiotics and natural products. However, the current challenge is the applicability of these strategies in clinical practice. For this reason, strategies employing a rational design are necessary, including in the development of nano- and microsystems for the oral route.

2.
Mater Today Bio ; 20: 100671, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37273792

ABSTRACT

Gliomas are the most common type of brain cancer, and among them, glioblastoma multiforme (GBM) is the most prevalent (about 60% of cases) and the most aggressive type of primary brain tumor. The treatment of GBM is a major challenge due to the pathophysiological characteristics of the disease, such as the presence of the blood-brain barrier (BBB), which prevents and regulates the passage of substances from the bloodstream to the brain parenchyma, making many of the chemotherapeutics currently available not able to reach the brain in therapeutic concentrations, accumulating in non-target organs, and causing considerable adverse effects for the patient. In this scenario, nanocarriers emerge as tools capable of improving the brain bioavailability of chemotherapeutics, in addition to improving their biodistribution and enhancing their uptake in GBM cells. This is possible due to its nanometric size and surface modification strategies, which can actively target nanocarriers to elements overexpressed by GBM cells (such as transmembrane receptors) related to aggressive development, drug resistance, and poor prognosis. In this review, an overview of the most frequently overexpressed receptors in GBM cells and possible approaches to chemotherapeutic delivery and active targeting using nanocarriers will be presented.

3.
Nanomedicine (Lond) ; 18(7): 633-647, 2023 03.
Article in English | MEDLINE | ID: mdl-37183804

ABSTRACT

Nanomedicines have been investigated for delivering drugs to tumors due to their ability to accumulate in the tumor tissues. 2D in vitro cell culture has been used to investigate the antitumoral potential of nanomedicines. However, a 2D model cannot adequately mimic the in vivo tissue conditions because of the lack of cell-cell interaction, a gradient of nutrients and the expression of genes. To overcome this limitation, 3D cell culture models have emerged as promising platforms that better replicate the complexity of native tumors. For this purpose, different techniques can be used to produce 3D models, including scaffold-free, scaffold-based and microfluidic-based models. This review addresses the principles, advantages and limitations of these culture methods for evaluating the antitumoral efficacy of nanomedicines.


Subject(s)
Neoplasms , Spheroids, Cellular , Humans , Nanomedicine , Neoplasms/drug therapy , Neoplasms/pathology , Cell Culture Techniques/methods , Microfluidics
SELECTION OF CITATIONS
SEARCH DETAIL