Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 638-648, 2024 04.
Article in English | MEDLINE | ID: mdl-38282365

ABSTRACT

Schizophrenia (SCZ) response to pharmacological treatment is highly variable. Quetiapine (QTP) administered as QTP lipid core nanocapsules (QLNC) has been shown to modulate drug delivery to the brain of SCZ phenotyped rats (SPR). In the present study, we describe the brain concentration-effect relationship after administrations of QTP as a solution or QLNC to SPR and naïve animals. A semimechanistic pharmacokinetic (PK) model describing free QTP concentrations in the brain was linked to a pharmacodynamic (PD) model to correlate the drug kinetics to changes in dopamine (DA) medial prefrontal cortex extracellular concentrations determined by intracerebral microdialysis. Different structural models were investigated to fit DA concentrations after QTP dosing, and the final model describes the synthesis, release, and elimination of DA using a pool compartment. The results show that nanoparticles increase QTP brain concentrations and DA peak after drug dosing to SPR. To the best of our knowledge, this is the first study that combines microdialysis and PK/PD modeling in a neurodevelopmental model of SCZ to investigate how a nanocarrier can modulate drug PK and PD, contributing to the development of new treatment strategies for SCZ.


Subject(s)
Nanocapsules , Schizophrenia , Rats , Animals , Quetiapine Fumarate/pharmacokinetics , Dopamine , Nanocapsules/chemistry , Schizophrenia/drug therapy , Lipids
2.
Drug Deliv Transl Res ; 13(2): 642-657, 2023 02.
Article in English | MEDLINE | ID: mdl-36008703

ABSTRACT

Buccal drug administration may be chosen as a medication route to treat various diseases for local or systemic effects. This study proposes the development of a thermosensitive hydrogel containing curcumin-loaded lipid-core nanocapsules coated with chitosan to increase mucoadhesion, circumventing several limitations of this route of administration. Hydroxypropylmethylcellulose and Poloxamer® 407 were incorporated for hydrogel production. Physicochemical characterization parameters, such as particle size distribution, mean diameter, polydispersity index, zeta potential, and morphology, were analyzed. Spherical homogeneous particles were obtained with average diameter, of 173 ± 22 nm for LNCc (curcumin lipid-core nanocapsules) and 179 ± 48 nm for CLNCc (chitosan-curcumin lipid-core nanocapsules). A PDI equal to 0.09 ± 0.02 for LNCc and 0.26 ± 0.01 for CLNCc confirmed homogeneity. Tensile analysis and washability test on porcine buccal mucosa indicated higher mucoadhesion for hydrogels in comparison to the nanocapsules in suspension, remaining on the mucous membrane up to 8 h (10.92 ± 3.95 µg of curcumin washed for H-LNCc and 28.41 ± 24.47 µg for H-CLNCc) versus the latter, which remained washed on the membrane for 90 min only (62.60 ± 4.72 µg for LNCc and 52.08 ± 1.63 µg for CLNCc). The irritant potential (IR) of the formulations was evaluated by the hen's egg chorioallantoic membrane test (HET-CAM), with no irritation phenomena observed. Formulations were tested for their efficacy in an in vitro model against oral squamous cancer cell line, showing a significant reduction in cell viability on all tested groups. These findings demonstrated that the proposed nanosystem is mucoadhesive and has potential to deliver buccal treatments.


Subject(s)
Carcinoma, Squamous Cell , Chitosan , Curcumin , Head and Neck Neoplasms , Mouth Neoplasms , Nanocapsules , Animals , Female , Swine , Nanocapsules/chemistry , Hydrogels , Chitosan/chemistry , Squamous Cell Carcinoma of Head and Neck , Chickens , Mouth Neoplasms/drug therapy , Lipids/chemistry
3.
Environ Sci Pollut Res Int ; 30(13): 36405-36421, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36547826

ABSTRACT

This study characterized and investigated the toxicity of two multi-walled carbon nanotubes (MWCNT) NM-401 and NM-403 at 60 and 180 µg after four repeated intratracheal instillations; follow-up times were 3, 7, 30, and 90 days after the last instillation. NM-401 was needle-like, long, and thick, while NM-403 was entangled, short, and thin. Both MWCNT types induced transient pulmonary and systemic alterations in renal function and oxidative lipid damage markers in recent times. Animals showed general toxicity in the immediate times after exposures, in addition to increased pulmonary LDH release at day 3. In further times, decreased liver and kidney relative weights were noted at higher MWCNT doses. Lung histological damages included pulmonary fibrosis, for both MWCNT types, similarly to asbestos; single liver and kidney histological alterations were present. Repeated instillations led to persistent pulmonary damage at low doses, and possibly the extrapulmonary effects may be associated with the consecutive exposures.


Subject(s)
Nanotubes, Carbon , Pulmonary Fibrosis , Animals , Nanotubes, Carbon/toxicity , Lung , Pulmonary Fibrosis/pathology , Time Factors , Bronchoalveolar Lavage Fluid
4.
Pharmaceutics ; 14(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35214122

ABSTRACT

Coccidiosis is a disease caused by intracellular protozoan parasites of the genus Eimeria that affect the intestinal tract of poultry. However, strain resistance and drug residue in the carcass have drawn the attention of the productive sector. The nanotechnology can improve the biological effect of drugs, reducing of administered doses and toxic effects. Due to this, toltrazuril-load polymeric nanoparticles based on Eudragit® S100 (NCt) or poly-ε-caprolactone (LNCt) were developed to prevent coccidiosis in broilers. Nanoformulations were produced and showed homogeneous particle diameter distribution in the nanometer range (z-average and D (4.3) < 200 nm), negative zeta potential (<-8.93 mV), drug content ~100%, and encapsulation efficiency >90%. Cell viability assays using avian fibroblasts showed that LNCt presented no relevant toxicity up to 72 h. LNCt was then prophylactically administrated to chicken followed by challenge with Eimeria oocysts. The evaluation of the small intestine and cecum showed that the treatment with LNCt (3.5 mg/kg/day) in drinking water reduced the lesion scores and oocysts excretion, similar to the reference medicine containing toltrazuril (Baycox®, 7 mg/kg/day). The current study shows the potential protective use of nanoencapsulating anticoccidial drugs as a promising approach for the control of coccidiosis in poultry.

5.
Pharmaceutics ; 13(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208088

ABSTRACT

Glioblastoma (GB) is a histological and genetically heterogeneous brain tumor that is highly proliferative and vascularized. The prognosis is poor with currently available treatment. In this study, we evaluated the cytotoxicity and antiangiogenic activity of doxorubicin-loaded-chitosan-coated-arginylglycylaspartic acid-functionalized-poly(ε-caprolactone)-alpha bisabolol-LNC (AB-DOX-LNC-L-C-RGD). The nanoformulation was prepared by self-assembling followed by interfacial reactions, physicochemically characterized and evaluated in vitro against GB cell lines (U87MG and U138MG) and in vivo using the chicken chorioallantoic membrane assay (CAM). Spherical shape nanocapsules had a hydrodynamic mean diameter of 138 nm, zeta potential of +13.4 mV, doxorubicin encapsulation of 65%, and RGD conjugation of 92%. After 24 h of treatment (U87MG and U138MG), the median inhibition concentrations (IC50) were 520 and 490 nmol L-1 doxorubicin-equivalent concentrations, respectively. The treatment induced antiproliferative activity with S-phase cell-cycle arrest and apoptosis in the GB cells. Furthermore, after 48 h of exposure, evaluation of antiangiogenic activity (CAM) showed that the relative vessel growth following treatment with the nanocapsules was 5.4 times lower than that with the control treatment. The results support the therapeutic potential of the nanoformulation against GB and, thereby, pave the way for future preclinical studies.

6.
J Nanosci Nanotechnol ; 20(3): 1486-1494, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31492311

ABSTRACT

Galleria mellonella larvae is an invertebrate that has been extensively used as experimental model in the investigation of microbial virulence and efficacy of antimicrobial agents and can be used to provide faster and cheaper data than traditional test systems. Our objective was to propose the use of G. mellonella larvae as an In Vivo model to evaluate the toxicity of lipid-core nanocapsule (LNC) formulations having different surface coatings. Blank LNC formulations were coated with polysorbate 80 (LNC-1), lecithin and polysorbate 80 (LNC-2), and lecithin, chitosan and polysorbate 80 (LNC-3). Subsequently, the formulations were systemically administered to G. mellonella larvae at doses of 3.75×10-14, 3.75×10-13, 3.75×10-12, 3.75×10-11 and 3.75×10-10 mols of LNC per kg of larvae. The results demonstrated that those nanocapsules having neutral (LNC-1), negative (LNC-2) or positive (LNC-3) surface did not show acute toxicity effects in G. mellonella larvae. G. mellonella larvae is a viable and promising alternative for In Vivo nanotoxicological studies. We conclude that G. mellonella larvae can be used as an alternative model for the screening of the toxicity of polymeric nanocapsules functionalized with (i) polysorbate 80, (ii) lecithin and polysorbate 80, and (iii) lecithin, chitosan and polysorbate 80. Future studies can be now developed in order to evaluate their toxicity when loaded or functionalized with drugs.


Subject(s)
Chitosan , Nanocapsules , Animals , Chitosan/toxicity , Drug Compounding , Larva , Lipids , Nanocapsules/toxicity
7.
BMC Pharmacol Toxicol ; 20(Suppl 1): 80, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31852511

ABSTRACT

BACKGROUND: Melatonin has been described in the literature as a potent antioxidant. However, melatonin presents variable, low bioavailability and a short half-life. The use of polymeric nanoparticulated systems has been proposed for controlled release. Thus, the purpose of this study was to investigate the action of melatonin-loaded lipid-core nanocapsules (Mel-LNC) in the antioxidant system of Caenorhabditis elegans, and the possible protective effect of this formulation against lipid peroxidation caused by paraquat (PQ). METHODS: The suspensions were prepared by interfacial deposition of the polymer and were physiochemically characterized. C. elegans N2 wild type and transgenic worm CF1553, muls84 [sod-3p::gfp; rol6(su1006)] were obtained from the Caenorhabditis Genetics Center (CGC). The worms were divided into 5 groups: Control, PQ 0.5 mM, PQ 0.5 mM + Mel-LNC 10 µg/mL, PQ + unloaded lipid-core nanocapsules (LNC), and PQ + free melatonin (Mel) 10 µg/mL. The lipid peroxidation was assessed through thiobarbituric acid (TBARS) levels and the fluorescence levels of the transgenic worms expressing GFP were measured. RESULTS: The LNC and Mel-LNC presented a bluish-white liquid, with pH values of 5.56 and 5.69, respectively. The zeta potential was - 6.4 ± 0.6 and - 5.2 ± 0.2, respectively. The mean particle diameter was 205 ± 4 nm and 203 ± 3 nm, respectively. The total melatonin content was 0.967 mg/ml. The TBARS levels were significantly higher in the PQ group when compared to the control group (p < 0.001). Mel-LNC reduced TBARS levels to similar levels found in the control group. Moreover, only Mel-LNC significantly enhanced the SOD-3 expression (p < 0.05). Mel-LNC was capable of protecting C. elegans from lipid peroxidation caused by PQ and this was not observed when free melatonin was used. Moreover, Mel-LNC increased the fluorescence intensity of the transgenic strain that encodes the antioxidant enzyme SOD-3, demonstrating a possible mechanism of protection from PQ-induced damage. CONCLUSION: These findings demonstrated that melatonin, when associated with nanocapsules, had improved antioxidant properties and the protective activity against PQ-induced lipid peroxidation could be associated with the activation of antioxidant enzymes by Mel-LNC in C. elegans.


Subject(s)
Antioxidants/pharmacology , Caenorhabditis elegans/drug effects , Drug Carriers/chemistry , Lipid Peroxidation/drug effects , Melatonin/pharmacology , Nanocapsules/chemistry , Paraquat/toxicity , Superoxide Dismutase/genetics , Animals , Antioxidants/chemistry , Caenorhabditis elegans/enzymology , Drug Compounding , Lipids/chemistry , Melatonin/chemistry , Particle Size
8.
Food Chem ; 301: 125230, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31374531

ABSTRACT

Zeaxanthin nanoparticles (Zea-NP) and zeaxanthin nanoemulsion (Zea-NE) were incorporated in yogurt. Control yogurt (CY), yogurt added of nanoparticles (Y-NP) and yogurt added of nanoemulsion (Y-NE) were evaluated weekly regarding pH, titratable acidity, color, textural parameters, viscosity and syneresis during 28 days. Zeaxanthin retention in Y-NP and Y-NE was also determined over storage. Sensory attributes and morphology were evaluated in all yogurt samples, and zeaxanthin bioaccessibility after in vitro digestion was analyzed in Y-NP and Y-NE after preparation. At the end of storage time, zeaxanthin retention was higher in Y-NP (22.31 ±â€¯2.53%) than in Y-NE (16.84 ±â€¯0.53%). Despite the lower firmness and viscosity observed in Y-NP, these changes were not sensory perceived. The bioaccessibility after in vitro digestion suggested that nanoencapsulation provided a controlled release of the carotenoid. Zea-NP can be incorporated in yogurt, allowing the dispersion of a hydrophobic compound in a hydrophilic matrix, providing stability.


Subject(s)
Carotenoids/chemistry , Chemical Phenomena , Nanoparticles/chemistry , Taste , Yogurt/analysis , Zeaxanthins/chemistry , Viscosity
9.
Food Res Int ; 120: 872-879, 2019 06.
Article in English | MEDLINE | ID: mdl-31000308

ABSTRACT

Linseed oil was nanoencapsulated with chia seed mucilage (CSM) as structuring material. Linseed oil nanoparticles (LO-NP) were evaluated regarding particle size distribution, zeta potential, pH, viscosity, encapsulation efficiency, loading capacity, morphology, FT-IR and thermal properties. Furthermore, the nanoparticles were spray-dried, and oxidative stability was evaluated during 28 days under storage at accelerated conditions (40 °C). The bioaccessibility of spray dried nanoparticles (SP LO-NP) was also evaluated after in vitro digestion. Thereafter, SP LO-NP were utilized in the enrichment of orange juice, and physicochemical and sensory evaluation of pure orange juice and orange juice with SP LO-NP were evaluated. Nanoparticles in suspension presented a mean diameter of 356 ±â€¯2.83 nm, zeta potential of -22.75 ±â€¯3.89 mV and encapsulation efficiency of 52%. No significant differences regarding consumer acceptance were observed between pure orange juice and orange juice with SP LO-NP. The results suggest that CSM can be used as structuring material to nanoencapsulate hydrophobic compounds, allowing its solubility in foods with high water content. Furthermore, the SP LO-NP provided a good bioaccessibility to linseed oil after in vitro digestion, which represents an advantage to incorporate the nanoparticles in food.


Subject(s)
Citrus sinensis/chemistry , Food, Fortified , Fruit and Vegetable Juices , Linseed Oil/chemistry , Plant Mucilage/chemistry , Salvia/chemistry , Nanotechnology , Seeds/chemistry
10.
Data Brief ; 21: 918-933, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30426046

ABSTRACT

The data presented here are related to the research paper entitled "Chemical stability, mass loss and hydrolysis mechanism of sterile and non-sterile lipid-core nanocapsules: the influence of the molar mass of the polymer wall," [1]. Experimental details of the nanoemulsion and nanosphere preparation. Sterilization methodology and their efficacy by microbiological analyses (turbidimetry and fungi and bacteria detection). Characterization data of formulations, LNC 1, LNC 2 and LNC 3, analyzed by laser diffraction and DLS analysis, as well as, characterization data of degradation by SEC, including all statistics analyses.

11.
Int J Pharm ; 551(1-2): 121-132, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30218826

ABSTRACT

This study evaluated the in vivo anticonvulsant effect of a spray-dried powder for reconstitution containing phenytoin-loaded lipid-core nanocapsules. The effect of chitosan coating on redispersibility, gastrointestinal stability, and drug release from nanoparticles was evaluated during the development of the powders. Maltodextrin was used as adjuvant in the spray-drying process. Chitosan coating played an important role in redispersibility, and large particles (>100 µm) were obtained using the highest concentration of solids in the feed. However, after aqueous redispersion, volume-based particle size was reduced to about 1 µm. The release of nanoparticles from the surface of the spherical microagglomerates (roundness index = 0.75) was confirmed by SEM analysis. Powders reconstituted in water recovered partially the nanometric properties of the original suspensions and were stable for 24 h. Phenytoin-loaded chitosan-coated nanocapsules and their redispersed powders have good gastrointestinal stability, and are able to control drug release in simulated gastric and intestinal fluids. Besides that, the reconstituted powder containing chitosan-coated nanocapsules exhibited improved anticonvulsant activity against seizures induced by pilocarpine in mice, compared to the non-encapsulated drug, representing an important approach in anticonvulsant treatments for children and adults.


Subject(s)
Anticonvulsants/administration & dosage , Nanocapsules/administration & dosage , Phenytoin/administration & dosage , Animals , Anticonvulsants/chemistry , Chitosan/administration & dosage , Chitosan/chemistry , Desiccation , Drug Compounding , Drug Liberation , Female , Male , Mice, Inbred C57BL , Nanocapsules/chemistry , Phenytoin/chemistry , Pilocarpine , Polysaccharides/administration & dosage , Polysaccharides/chemistry , Powders , Seizures/chemically induced , Seizures/drug therapy
12.
Food Chem ; 234: 1-9, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28551210

ABSTRACT

In this study, chia seed oil was nanoencapsulated utilizing chia seed mucilage (CSM) as wall material. The viscosity, encapsulation efficiency, loading capacity, transmission electron microscopy, FT-IR spectroscopy and thermal properties of chia seed oil nanoparticles (CSO-NP) were performed after preparation. Particle size, zeta potential, span value, and pH of CSO-NP and oxidation stability of nanoencapsulated and unencapsulated oil were evaluated during 28days of storage at accelerated conditions (40°C). The CSO-NP showed spherical shape, an average size of 205±4.24nm and zeta potential of -11.58±1.87mV. The encapsulation efficiency (82.8%), loading capacity (35.38%) and FT-IR spectroscopy demonstrated the interaction between oil and mucilage. Furthermore, CSO-NP were thermally stable at temperatures up 300°C and nanoencapsulated oil showed higher stability against oxidation than unencapsulated oil. The results suggest that chia seed mucilage represents a promising alternative to substitute synthetic polymers in nanoencapsulation.


Subject(s)
Plant Mucilage/chemistry , Plant Oils/chemistry , Polysaccharides/chemistry , Salvia/chemistry , Seeds/chemistry
13.
AAPS PharmSciTech ; 18(1): 212-223, 2017 01 01.
Article in English | MEDLINE | ID: mdl-26956145

ABSTRACT

Lipid-core nanocapsules (LNC) were designed and prepared as a colloidal system for drug targeting to improve the stability of drugs and allow their controlled release. For parenteral administration, it is necessary to ensure formulation sterility. However, sterilization of nanotechnological devices using an appropriate technique that keeps the supramolecular structure intact remains a challenge. This work aimed to evaluate the effect of autoclaving on the physicochemical characteristics of LNC. Formulations were prepared by the self-assembling method, followed by isotonization and sterilization at varying times and temperatures. The isotonicity was confirmed by determining the freezing temperature, which was -0.51°C. The formulation was broadly characterized, and the diameter of the particles was determined utilizing complementary methods. To evaluate the chemical stability of poly(ε-caprolactone), its molecular weight was determined by size exclusion chromatography. The physicochemical characteristics (average diameter, viscosity, and physical stability) of the formulation were similar before and after adding glycerol and conducting the sterilization at the highest temperature (134°C) and the shorter exposure time (10 min). After autoclaving, the sterility test was performed and showed no detectable microbial growth. Multiple light scattering demonstrated that the formulations were kinetically stable, and the mean diameter was constant for 6 months, corroborating this result. The polymer was chemically stable in the sterilized formulation. Isotonic and sterile LNC aqueous suspensions were produced using glycerol and autoclaving. Briefly, the results open an opportunity to produce an isotonic and sterile LNC aqueous dispersion applicable as nanomedicine for intravenous administration in clinical trials.


Subject(s)
Lipids/administration & dosage , Lipids/chemistry , Nanocapsules/administration & dosage , Nanocapsules/chemistry , Administration, Intravenous/methods , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Delivery Systems/methods , Kinetics , Particle Size , Polyesters/chemistry , Polymers/chemistry , Sterilization , Temperature , Viscosity
14.
Drug Dev Ind Pharm ; 42(12): 2001-2008, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27161601

ABSTRACT

Lipid-core polymeric nanocapsule suspensions containing adapalene and dapsone (AD-LCNC) were developed and incorporated in a Carbopol 940® hydrogel (AD-LCNC HG). A nanoemulsion (AD-NE), similarly prepared but omitting the polymer, was developed and also incorporated in a Carbopol 940® hydrogel (AD-NE HG) to evaluate the polymer effect. Physicochemical characteristics were evaluated. AD-LCNC suspensions containing 0.07% of dapsone and 0.025% of adapalene presented an average size of 194.9 ± 0.42 nm, zeta potential of -15 ± 1.2 mV and polydispersity index of 0.12 ± 0.02, using electrophoretic light scattering (n = 3). The granulometric profiles showed unimodal size distributions for AD-LCNC suspensions, demonstrating that no microscopic population is present in the formulation. No instability phenomena were observed by multiple light-scattering analysis. Photomicrographs obtained by TEM showed homogeneous- and spherical-shaped particles. The encapsulation efficiency was 99.99% for dapsone and 100% for adapalene. The pH values for AD-LCNC suspensions were 5.1 and 7.6 for AD-LCNC HG. Formulations were classified as nonirritant in the HET-CAM test. Rheological analysis demonstrated a non-Newtonian pseudoplastic profile. The in vitro skin permeation studies showed a higher amount of adapalene in epidermis (130.52 ± 25.72 ng/mg) and dermis (4.66 ± 2.5 ng/mg) for AD-NE HG. The AD-LCNC HG presented higher amount of dapsone in both the skin layers (73.91 ± 21.64 ng/mg in epidermis and 4.08 ± 0.85 ng/mg in dermis). The assay showed significant difference between AD-LCNC HG and AD-NE HG (p < 0.05), and drug was not found in the receptor medium.

15.
Mol Pharm ; 13(4): 1289-97, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26905300

ABSTRACT

Lipid-core nanocapsules (LCNs) have been proposed as drug carriers to improve brain delivery by modulating drug pharmacokinetics (PK). However, it is not clear whether the LCNs carry the drug through the blood-brain barrier or increase free drug penetration due to changes in the barrier permeability. Quetiapine (QTP) penetration to the brain is mediated by influx transporters and therefore might be reduced by drug transporters inhibitiors as probenecid. The goal of this work was to investigate the role of type-III LCNs on brain penetration of QTP using microdialysis in the presence probenecid. QTP-loaded LCN (QLNC) was successfully obtained with a small particle size (143 ± 6 nm), low polydispersity index (PI < 0.1), and high encapsulation efficiency (95.4 ± 1.82%.). Total and free drug concentration in plasma and free drug concentration in brain were analyzed following i.v. bolus dosing of nonencapsulated drug (FQ) and QLNC formulations alone and in association with probenecid to male Wistar rats. QTP free plasma fraction right after administration of QLNC was smaller than the fraction observed after FQ dosing; however, it increased over time until similar free drug levels were attained, suggesting that type-III LNCs produce a short in vivo sustained release of the drug. The inhibition of influx transporters by PB led to a reduction of free QTP brain penetration, as observed by the reduction of penetration factor from 1.55 ± 0.17 to a value closer to unit (0.94 ± 0.15). However, when the drug was nanoencapsulated, the inhibition of influx transporters had no effect on the brain penetration factor (0.88 ± 0.21 to 0.92 ± 0.13) probably because QTP is loaded into LNC and not available to interact with transporters. Taken together, these results suggest that LNC type-III carried QTP in the bloodstream and delivered the drug to the brain.


Subject(s)
Blood-Brain Barrier/metabolism , Nanocapsules/chemistry , Quetiapine Fumarate/pharmacokinetics , Animals , Male , Microdialysis , Rats , Rats, Wistar
16.
Article in English | MEDLINE | ID: mdl-26046970

ABSTRACT

Many acute poisonings lack effective and specific antidotes. Due to both intentional and accidental exposures, paraquat (PQ) causes thousands of deaths annually, especially by pulmonary fibrosis. Melatonin (Mel), when incorporated into lipid-core nanocapsules (Mel-LNC), has enhanced antioxidant properties. The effects of such a formulation have not yet been studied with respect to mitigation of PQ- induced cytotoxicity and DNA damage. Here, we have tested whether Mel-LNC can ameliorate PQ-induced toxicity in the A549 alveolar epithelial cell line. Physicochemical characterization of the formulations was performed. Cellular uptake was measured using nanocapsules marked with rhodamine B. Cell viability was determined by the MTT assay and DNA damage was assessed by the comet assay. The enzyme-modified comet assay with endonuclease III (Endo III) and formamidopyrimidine glycosylase (FPG) were used to investigate oxidative DNA damage. Incubation with culture medium for 24h did not alter the granulometric profile of Mel-LNC formulations. Following treatment (3 and 24h), red fluorescence was detected around the cell nucleus, indicating internalization of the formulation. Melatonin solution (Mel), Mel-LNC, and LNC did not have significant effects on cell viability or DNA damage. Pre-treatment with Mel-LNC enhanced cell viability and showed a remarkable reduction in % DNA in tail compared to the PQ group; this was not observed in cells pre-treated with Mel. PQ induces oxidative DNA damage detected with the enzyme-modified comet assay. Mel-LNC reduced this damage more effectively than did Mel. In summary, Mel-LNC is better than Mel at protecting A549 cells from the cytotoxic and genotoxic effects of PQ.


Subject(s)
Antioxidants/pharmacology , DNA Damage/drug effects , Melatonin/pharmacology , Nanocapsules/chemistry , Paraquat/toxicity , Pulmonary Alveoli/drug effects , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Culture Media/chemistry , Humans , Particle Size , Pulmonary Alveoli/cytology
17.
Biomed Res Int ; 2015: 104135, 2015.
Article in English | MEDLINE | ID: mdl-25738149

ABSTRACT

Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions.


Subject(s)
Fear/drug effects , Hippocampus/metabolism , Memory/drug effects , Nanotubes, Carbon , Oxidative Stress/drug effects , Polyethylene Glycols , Animals , Lipid Peroxidation/drug effects , Male , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Rats , Rats, Wistar
18.
Food Chem ; 141(4): 3906-12, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23993564

ABSTRACT

The aim of this study was to produce bixin nanocapsules by the interfacial deposition of preformed poly-ε-caprolactone (PCL). PCL (250 mg), capric/caprylic triglyceride (400 µL), sorbitan monostearate (95 mg) and bixin were dissolved in a mixture of acetone (60 mL) and ethanol (7.5 mL) under stirring (40 °C). This organic solution was added to the aqueous solution (130 mL) containing Tween 80 (195 mg). The size distributions in the formulations with bixin concentration from 11 to 100 µg/mL were evaluated periodically during 3 weeks of storage at ambient temperature. The optimal formulation (bixin concentration of 16.92±0.16 µg/mL) was characterised in terms of particle size distribution, zeta potential, bixin content and encapsulation efficiency, and showed a volume-weighted mean diameter (D4,3) of 195±27 nm, around 100% of encapsulation efficiency and the nanocapsules were considered physically stable during 119 days of storage at ambient temperature.


Subject(s)
Carotenoids/chemistry , Drug Compounding/methods , Nanocapsules/chemistry , Drug Stability , Drug Storage , Particle Size
19.
Expert Opin Drug Deliv ; 10(5): 623-38, 2013 May.
Article in English | MEDLINE | ID: mdl-23387432

ABSTRACT

INTRODUCTION: Poly(ϵ-caprolactone) (PCL), a biodegradable and biocompatible polymer, is useful to encapsulate a wide range of drugs making it an interesting material for the preparation of carriers with potential applications in therapeutics. AREAS COVERED: The design and development of those carriers to modulate drug release, to improve the drug stability or apparent solubility in aqueous media, as well as to target tissues and organs are discussed. EXPERT OPINION: Microencapsulation is a well-established process in pharmaceutical industry to protect drugs from chemical degradation and to control drug release. In this context, PCL is a useful polymer to prepare microcapsules. Nanoencapsulation, a more recent approach, offers new possibilities in drug delivery. PCL can be used as polymer to prepare different types of nanocapsules presenting diverse flexibility according to the chemical nature of the core. Those nanocapsules are capable of controlling drug release and improving photochemical stability. In addition, they can modulate cutaneous drug penetration/permeation and act as physical sunscreen due to their capability of light scattering. Considering the pharmaceutical point of view, PCL nanocapsules are versatile formulations, once they can be used in the liquid form, as well as incorporated into semi-solid or solid dosage forms.


Subject(s)
Capsules/chemistry , Drug Delivery Systems , Nanocapsules/chemistry , Polyesters/chemistry , Animals , Biocompatible Materials , Chemistry, Pharmaceutical , Drug Compounding , Drug Stability , Humans , Polymers/administration & dosage , Skin/metabolism , Solubility , Sunscreening Agents/administration & dosage , Sunscreening Agents/pharmacokinetics
20.
Photochem Photobiol ; 87(2): 457-60, 2011.
Article in English | MEDLINE | ID: mdl-21143606

ABSTRACT

The sun protection factor (SPF) of sunscreens is determined using samples applied with a thickness of 2 mg cm(-2). Sunscreen users, however, typically apply sunscreen nonuniformly and in smaller amounts. The objective of our study was to verify whether sunscreen reapplication increases the amount and regularity of the product on the skin. Volunteers were asked to apply an SPF 6 sunscreen on their forearms and reapply it 30 min later on one forearm. Tape-strips were used to collect five samples from two different sites on each forearm. The concentration of benzophenone-3 in the samples was measured and the total amount of sunscreen was estimated using high-performance liquid chromatography. The median amount of sunscreen film was 0.43 mg cm(-2) (0.17-1.07) after one application and 0.95 mg cm(-2) (0.18-1.91) after two applications (P = 0.002). No significant difference was found in the film uniformity. Though sunscreen reapplication increases the amount of product on the skin, levels are still lower than the recommended amount, confirming that the protection level is less than the product-stated SPF. Our results are the first in the literature to support the recommendation for reapplying sunscreens. Based on our results, we recommend that sunscreens be labeled using qualitative measures.


Subject(s)
Retreatment , Sunburn/prevention & control , Sunscreening Agents/administration & dosage , Sunscreening Agents/pharmacology , Adolescent , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL