Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829822

ABSTRACT

House flies (Musca domestica L.) (Diptera: Muscidae) are challenging pests to control. Biological control using Carcinops pumilio beetles may help to reduce house fly populations. However, it is unknown if C. pumilio beetles are compatible with Beauveria bassiana, another house fly biological control option. Five strains of commercially available (GHA, HF23, and L90) and newly discovered (NFH10 and PSU1) strains of B. bassiana were used to test the comparative susceptibility of adult house flies and adult C. pumilio using different laboratory exposure methods. Adult house flies were susceptible to B. bassiana in contact filter paper assays (89%-98% mortality) and immersion assays (100% mortality) at the same 108 conidia suspension using 0.1% CapSil as an aqueous surfactant. Carcinops pumilio were less susceptible than flies to B. bassiana infection using the contact and immersion assays at the same 108 conidial concentration, with 4.4%-12.2% and 8.3%-24.6% mortality, respectively. Immersion in an aqueous conidial suspension resulted in higher mortality compared to contact with treated filter papers at the same 108 concentration with house flies and beetles. We conclude that C. pumilio can safely be used as a biological control agent for house flies with B. bassiana in animal production systems.

2.
Insects ; 15(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667407

ABSTRACT

House flies are notoriously difficult to control, owing to their tendency to live in close relationships with humans and their livestock, and their rapid development of resistance to chemical controls. With this in mind, we explored an alternative chemical control, a spatial repellent to deter Musca domestica L. from points we wanted to protect (i.e., a baited trap). Our results demonstrated that the synthetic spatial repellent, transfluthrin, is effective in preventing M. domestica adults from entering protected traps for both a susceptible strain (CAR21) and a field-acquired permethrin-resistant strain (WHF; 24 h LD50 resistance ratio of 150), comprising 22% and 28% of the total number of flies collected, respectively. These results are promising and demonstrate that transfluthrin can be an effective spatial repellent to protect points of interest where needed.

3.
J Vector Ecol ; 49(1): 44-52, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38147300

ABSTRACT

In the United States, there has been a steady increase in diagnosed cases of tick-borne diseases in people, most notably Lyme disease. The pathogen that causes Lyme disease, Borrelia burgdorferi, is transmitted by the blacklegged tick (Ixodes scapularis). Several small mammals are considered key reservoirs of this pathogen and are frequently-used hosts by blacklegged ticks. However, limited studies have evaluated between-species host use by ticks. This study compared I. scapularis burdens and tick-associated pathogen presence in wild-caught Clethrionomys gapperi (southern red-backed voles) and Peromyscus spp. (white-footed mice) in forested areas where the habitat of both species overlapped. Rodent trapping data collected over two summers showed a significant difference in the average tick burden between species. Adult Peromyscus spp. had an overall mean of 4.03 ticks per capture, while adult C. gapperi had a mean of 0.47 ticks per capture. There was a significant association between B. burgdorferi infection and host species with more Peromyscus spp. positive samples than C. gapperi (65.8% and 10.2%, respectively). This work confirms significant differences in tick-host use and pathogen presence between sympatric rodent species. It is critical to understand tick-host interactions and tick distributions to develop effective and efficient tick control methods.


Subject(s)
Ixodes , Lyme Disease , Humans , Animals , Adult , Rodentia , Peromyscus , Arvicolinae
4.
J Med Entomol ; 60(6): 1364-1373, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37643752

ABSTRACT

House fly (Musca domestica L.) (Diptera: Muscidae) populations can negatively impact poultry layer facilities, posing a risk to human and animal health and egg food safety. House flies quickly develop resistance to traditional chemical control methods; therefore, improved biological control may provide opportunities for improved integrated pest management (IPM) programs. Biological control methods currently used include augmentative releases of pteromalid pupal parasitoids and application of the fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin. This study used bioassays to compare the impact of different B. bassiana strains on survival of house flies and of 3 species of filth fly parasitoids. The B. bassiana that were compared were 3 new field-collected isolates, an older field-collected isolate (L90), and a common commercially available strain (GHA). Flies and parasitoids were exposed to filter paper treated with 1.5 × 109 spores of each strain and a control. All field-isolated strains induced lower mean survival times in house flies than GHA did. The results for all species of parasitoids demonstrated less difference among the treatment groups and the control than in-house flies. Although there was some effect of B. bassiana exposure on parasitoid mortality, the expected spatial separation of parasitoids from areas of application may offer some protection. Using the most effective tested strains of B. bassiana and filth fly parasitoids jointly could be a biological component of an IPM plan for fly control in poultry facilities.


Subject(s)
Beauveria , Houseflies , Hymenoptera , Muscidae , Humans , Animals , Houseflies/microbiology , Pest Control, Biological/methods
5.
J Med Entomol ; 59(6): 2006-2012, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36130177

ABSTRACT

Muscid flies, especially house flies (Musca domestica L.) (Diptera: Muscidae), are a major pest of poultry layer facilities. Augmentative biological control of muscid flies with pteromalid wasps has gained increased attention in recent years. Knowing which pteromalid species are present in a specific area could produce more effective filth fly control. The purpose of this project was to survey parasitoid populations in poultry layer facilities in central and southeastern Pennsylvania from June through September. Two genera of parasitoids, Spalangia and Trichomalopsis, were collected over the course of the survey. Overall, out of 3,724 parasitized pupae the species collected in order of most to least common were Spalangia cameroni Perkins, Spalangia nigroaenea Curtis, Trichomalopsis spp., and Spalangia endius Walker. House fly parasitism overall and by each parasitoid species varied by location and over the four study months. A second objective was to evaluate a new parasitoid trap for surveying parasitoid wasp populations. This device uses a combination of house fly third instars and development media. This was compared to a more traditional method, the sentinel bag, which uses only fly pupae. A higher proportion of Spalangia spp. emerged from the new trap design and more Trichomalopsis spp. emerged from the sentinel bag. This suggests that using this new device alongside the traditional collection method may result in more accurate sampling of pteromalid populations.


Subject(s)
Houseflies , Muscidae , Wasps , Animals , Poultry , Pupa , Pest Control, Biological
6.
J Vector Ecol ; 45(1): 32-44, 2020 06.
Article in English | MEDLINE | ID: mdl-32492279

ABSTRACT

The number of recognized flea-borne pathogens has increased over the past decade. However, the true number of infections related to all flea-borne pathogens remains unknown. To better understand the enzootic cycle of flea-borne pathogens, fleas were sampled from small mammals trapped in central Pennsylvania. A total of 541 small mammals were trapped, with white-footed mice (Peromyscus leucopus) and southern red-backed voles (Myodes gapperi) accounting for over 94% of the captures. Only P. leucopus were positive for examined blood-borne pathogens, with 47 (18.1%) and ten (4.8%) positive for Anaplasma phagocytophilum and Babesia microti, respectively. In addition, 61 fleas were collected from small mammals and tested for pathogens. Orchopeas leucopus was the most common flea and Bartonella vinsonii subspecies arupensis, B. microti, and a Rickettsia felis-like bacterium were detected in various flea samples. To the best of our knowledge, this is the first report of B. microti DNA detected from a flea and the first report of a R. felis-like bacterium from rodent fleas in eastern North America. This study provides evidence of emerging pathogens found in fleas, but further investigation is required to resolve the ecology of flea-borne disease transmission cycles.


Subject(s)
Bartonella/pathogenicity , Siphonaptera/parasitology , Animals , Arvicolinae/parasitology , Babesia microti/parasitology , Babesia microti/pathogenicity , Male , Mammals/parasitology , Pennsylvania , Peromyscus/parasitology , Rickettsia felis/pathogenicity , Sciuridae/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...