Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Parasitol ; 48(2): 97-105, 2018 02.
Article in English | MEDLINE | ID: mdl-29050919

ABSTRACT

Cyathostomins are ubiquitous in grazing horses across the world, and anthelmintic resistance has been reported with increasing levels over past decades. The aims of the present study were (i) to investigate the efficacy against encysted larval stages of moxidectin (0.4 mg/kg) and fenbendazole (10 mg/kg daily for five consecutive days) and compare these regimens at 2 and 5 weeks post-treatment, (ii) to investigate individual cyathostomin species associated with shortened egg reappearance periods, and (iii) to document species exhibiting decreased susceptibility to the evaluated compounds. Thirty-six ponies were allocated to treatment groups with half euthanatized 2 weeks post-treatment, and the remainder necropsied after 5 weeks. Luminal and mucosal worm counts were conducted and strongyle egg counts were determined at weekly intervals. At 2 weeks, mean reductions of early L3s were 50.4% and 73.8% for fenbendazole and moxidectin, respectively. At 5 weeks, the respective efficacies were 51.3% and 71.8%. Two week efficacies against late L3s and L4s (LL3s/L4s) were 70.8% and 74.6% for fenbendazole and moxidectin, respectively, whereas very low numbers were found in all three groups at 5 weeks. None of the mucosal counts were significantly different between treatment groups. Fenbendazole and moxidectin reduced luminal worm counts by 93.2% and 98.3% at 2 weeks following administration, with moxidectin group adult counts being significantly lower than the other two groups (P < 0.0001). Both treatment groups had increased counts 3 weeks later (P = 0.0415). A moxidectin ERP of 4 weeks was associated with surviving luminal L4s, and adult species contributing to this were Cyathostomum catinatum, Cylicostephanus longibursatus, Cylicocyclus ashworthi and Cylicocyclus nassatus. This study documented (i) larvicidal efficacy of fenbendazole much lower than historical standards, (ii) survival of luminal immatures (L4) following moxidectin administration, and (iii) new information about cyathostomin species associated with these phenomena.


Subject(s)
Antinematodal Agents/therapeutic use , Drug Resistance , Horse Diseases/parasitology , Strongylida Infections/veterinary , Strongyloidea/drug effects , Animals , Antinematodal Agents/pharmacology , Female , Fenbendazole/pharmacology , Fenbendazole/therapeutic use , Horse Diseases/drug therapy , Horses , Larva/drug effects , Macrolides/pharmacology , Macrolides/therapeutic use , Male , Random Allocation , Strongylida Infections/drug therapy , Strongyloidea/growth & development
2.
Int J Parasitol ; 46(8): 485-93, 2016 07.
Article in English | MEDLINE | ID: mdl-27025771

ABSTRACT

Intestinal parasites are a concern in veterinary medicine worldwide and for human health in the developing world. Infections are identified by microscopic visualisation of parasite eggs in faeces, which is time-consuming, requires technical expertise and is impractical for use on-site. For these reasons, recommendations for parasite surveillance are not widely adopted and parasite control is based on administration of rote prophylactic treatments with anthelmintic drugs. This approach is known to promote anthelmintic resistance, so there is a pronounced need for a convenient egg counting assay to promote good clinical practice. Using a fluorescent chitin-binding protein, we show that this structural carbohydrate is present and accessible in shells of ova of strongyle, ascarid, trichurid and coccidian parasites. Furthermore, we show that a cellular smartphone can be used as an inexpensive device to image fluorescent eggs and, by harnessing the computational power of the phone, to perform image analysis to count the eggs. Strongyle egg counts generated by the smartphone system had a significant linear correlation with manual McMaster counts (R(2)=0.98), but with a significantly lower coefficient of variation (P=0.0177). Furthermore, the system was capable of differentiating equine strongyle and ascarid eggs similar to the McMaster method, but with significantly lower coefficients of variation (P<0.0001). This demonstrates the feasibility of a simple, automated on-site test to detect and/or enumerate parasite eggs in mammalian faeces without the need for a laboratory microscope, and highlights the potential of smartphones as relatively sophisticated, inexpensive and portable medical diagnostic devices.


Subject(s)
Feces/parasitology , Fluorescent Dyes , Image Processing, Computer-Assisted/methods , Parasite Egg Count/methods , Smartphone , Animals , Ascaridida/isolation & purification , Cats , Cattle , Chitin/metabolism , Dogs , Filtration/instrumentation , Goats , Horses , Image Processing, Computer-Assisted/instrumentation , Parasite Egg Count/instrumentation , Sheep , Strongyloidea/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL