Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(20): 13754-13759, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739748

ABSTRACT

a-Tertiary amino acids are essential components of drugs and agrochemicals, yet traditional syntheses are step-intensive and provide access to a limited range of structures with varying levels of enantioselectivity. Here, we report the α-alkylation of unprotected alanine and glycine by pyridinium salts using pyridoxal (PLP)-dependent threonine aldolases with a Rose Bengal photoredox catalyst. The strategy efficiently prepares various a-tertiary amino acids in a single chemical step as a single enantiomer. UV-vis spectroscopy studies reveal a ternary interaction between the pyridinium salt, protein, and photocatalyst, which we hypothesize is responsible for localizing radical formation to the active site. This method highlights the opportunity for combining photoredox catalysts with enzymes to reveal new catalytic functions for known enzymes.


Subject(s)
Amino Acids , Amino Acids/chemistry , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/chemistry , Photochemical Processes , Biocatalysis , Catalysis , Alkylation , Glycine/chemistry , Glycine/analogs & derivatives , Stereoisomerism , Molecular Structure , Oxidation-Reduction
2.
J Am Chem Soc ; 145(24): 13232-13240, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37289179

ABSTRACT

Photoenzymes are a rare class of biocatalysts that use light to facilitate chemical reactions. Many of these catalysts utilize a flavin cofactor to absorb light, suggesting that other flavoproteins might have latent photochemical functions. Lactate monooxygenase is a flavin-dependent oxidoreductase previously reported to mediate the photodecarboxylation of carboxylates to afford alkylated flavin adducts. While this reaction holds a potential synthetic value, the mechanism and synthetic utility of this process are unknown. Here, we combine femtosecond spectroscopy, site-directed mutagenesis, and a hybrid quantum-classical computational approach to reveal the active site photochemistry and the role the active site amino acid residues play in facilitating this decarboxylation. Light-induced electron transfer from histidine to flavin was revealed, which has not been reported in other proteins. These mechanistic insights enable the development of catalytic oxidative photodecarboxylation of mandelic acid to produce benzaldehyde, a previously unknown reaction for photoenzymes. Our findings suggest that a much wider range of enzymes have the potential for photoenzymatic catalysis than has been realized to date.


Subject(s)
Lactic Acid , Mixed Function Oxygenases , Mixed Function Oxygenases/chemistry , Oxidation-Reduction , Catalysis , Flavins/metabolism
3.
J Am Chem Soc ; 145(21): 11866-11874, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37199445

ABSTRACT

Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes; however, the selectivity of existing methods is modest and primarily governed by the substrate's electronic properties. Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective "ene"-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground-state CT in the CT complex. Mechanistic studies on a C2-selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8-selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective radical reactions, where small molecule catalysts struggle to alter selectivity.


Subject(s)
Catalysis , Alkylation , Calixarenes/chemistry , Indoles/chemistry
4.
Chem Rev ; 123(9): 5459-5520, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37115521

ABSTRACT

Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.


Subject(s)
Biocatalysis , Chemistry Techniques, Synthetic
5.
Res Sq ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865242

ABSTRACT

Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. 1,2 Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes, 3-5 however, the selectivity of existing methods is modest and primarily governed by substrate electronic properties. 6,7 Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective 'ene'-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground state change transfer in the CT complex. Mechanistic studies on a C2 selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8 selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective reactions where small molecule catalysts struggle to alter selectivity.

6.
J Am Chem Soc ; 144(38): 17516-17521, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36102697

ABSTRACT

Non-natural light-driven enzymatic reactivity was recently developed to perform the highly stereoselective reactions required for pharmaceutical synthesis. However, photoenzymes require high-intensity light to function because of the poor absorption properties of their photoactive intermediates. Inspired by the modular architecture of photosynthesis, we designed a conjugate composed of a covalently linked photoenzyme and a light antenna to separate light capture from catalysis. Spectroscopic characterization of the conjugate showed the presence of efficient energy transfer from the light-harvesting components to the photoenzyme. In the presence of energy transfer, a ∼4-fold increase in product yield was observed for intramolecular hydroalkylation of alkenes, and reactivity was enabled for intermolecular hydroalkylation of alkenes. These improvements establish the power of incorporating nature's design into non-natural photoenzymatic catalysis.


Subject(s)
Gluconobacter , Oxidoreductases , Alkenes , Catalysis , Light , Photosynthesis
7.
J Am Chem Soc ; 143(1): 97-102, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33369395

ABSTRACT

Intermolecular C-C bond-forming reactions are underdeveloped transformations in the field of biocatalysis. Here we report a photoenzymatic intermolecular hydroalkylation of olefins catalyzed by flavin-dependent 'ene'-reductases. Radical initiation occurs via photoexcitation of a rare high-order enzyme-templated charge-transfer complex that forms between an alkene, α-chloroamide, and flavin hydroquinone. This unique mechanism ensures that radical formation only occurs when both substrates are present within the protein active site. This active site can control the radical terminating hydrogen atom transfer, enabling the synthesis of enantioenriched γ-stereogenic amides. This work highlights the potential for photoenzymatic catalysis to enable new biocatalytic transformations via previously unknown electron transfer mechanisms.


Subject(s)
Alkenes/chemistry , Amides/chemical synthesis , Flavoproteins/chemistry , Oxidoreductases/chemistry , Alkylation/radiation effects , Biocatalysis/radiation effects , Catalytic Domain , Dinitrocresols/chemistry , Dinitrocresols/radiation effects , Flavoproteins/radiation effects , Light , Models, Chemical , Oxidoreductases/radiation effects
8.
Angew Chem Int Ed Engl ; 56(32): 9556-9560, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28679030

ABSTRACT

Fungal polyketides have significant biological activities, yet the biosynthesis by highly reducing polyketide synthases (HRPKSs) remains enigmatic. An uncharacterized group of HRPKSs was found to contain a C-terminal domain with significant homology to carnitine O-acyltransferase (cAT). Characterization of one such HRPKS (Tv6-931) from Trichoderma virens showed that the cAT domain is capable of esterifying the polyketide product with polyalcohol nucleophiles. This process is readily reversible, as confirmed through the holo ACP-dependent transesterification of the released product. The methyltransferase (MT) domain of Tv6-931 can perform two consecutive α-methylation steps on the last ß-keto intermediate to yield an α,α-gem-dimethyl product, a new programing feature among HRPKSs. Recapturing of the released product by cAT domain is suggested to facilitate complete gem-dimethylation by the MT.


Subject(s)
Carnitine Acyltransferases/metabolism , Polyketide Synthases/metabolism , Trichoderma/enzymology , Biocatalysis , Biological Products/chemistry , Biological Products/metabolism , Catalytic Domain , Metabolomics , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...