Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 70(8): 2486-2495, 2023 08.
Article in English | MEDLINE | ID: mdl-37028024

ABSTRACT

OBJECTIVE: electrical impedance tomography (EIT) is a promising technique for rapid and continuous bedside monitoring of lung function. Accurate and reliable EIT reconstruction of ventilation requires patient-specific shape information. However, this shape information is often not available and current EIT reconstruction methods typically have limited spatial fidelity. This study sought to develop a statistical shape model (SSM) of the torso and lungs and evaluate whether patient-specific predictions of torso and lung shape could enhance EIT reconstructions in a Bayesian framework. METHODS: torso and lung finite element surface meshes were fitted to computed tomography data from 81 participants, and a SSM was generated using principal component analysis and regression analyses. Predicted shapes were implemented in a Bayesian EIT framework and were quantitatively compared to generic reconstruction methods. RESULTS: Five principal shape modes explained 38% of the cohort variance in lung and torso geometry, and regression analysis yielded nine total anthropometrics and pulmonary function metrics that significantly predicted these shape modes. Incorporation of SSM-derived structural information enhanced the accuracy and reliability of the EIT reconstruction as compared to generic reconstructions, demonstrated by reduced relative error, total variation, and Mahalanobis distance. CONCLUSION: As compared to deterministic approaches, Bayesian EIT afforded more reliable quantitative and visual interpretation of the reconstructed ventilation distribution. However, no conclusive improvement of reconstruction performance using patient specific structural information was observed as compared to the mean shape of the SSM. SIGNIFICANCE: The presented Bayesian framework builds towards a more accurate and reliable method for ventilation monitoring via EIT.


Subject(s)
Tomography, X-Ray Computed , Tomography , Humans , Tomography/methods , Bayes Theorem , Electric Impedance , Reproducibility of Results
2.
Front Bioeng Biotechnol ; 10: 1018257, 2022.
Article in English | MEDLINE | ID: mdl-36394049

ABSTRACT

Following herniation of the intervertebral disc, there is a need for advanced surgical strategies to protect the diseased tissue from further herniation and to minimize further degeneration. Accordingly, a novel tissue engineered implant for annulus fibrosus (AF) repair was fabricated via three-dimensional fiber deposition and evaluated in a large animal model. Specifically, lumbar spine kinetics were assessed for eight (n = 8) cadaveric ovine lumbar spines in three pure moment loading settings (flexion-extension, lateral bending, and axial rotation) and three clinical conditions (intact, with a defect in the AF, and with the defect treated using the AF repair implant). In ex vivo testing, seven of the fifteen evaluated biomechanical measures were significantly altered by the defect. In each of these cases, the treated spine more closely approximated the intact biomechanics and four of these cases were also significantly different to the defect. The same spinal kinetics were also assessed in a preliminary in vivo study of three (n = 3) ovine lumbar spines 12 weeks post-implantation. Similar to the ex vivo results, functional efficacy of the treatment was demonstrated as compared to the defect model at 12 weeks post-implantation. These promising results motivate a future large animal study cohort which will establish statistical power of these results further elucidate the observed outcomes, and provide a platform for clinical translation of this novel AF repair patch strategy. Ultimately, the developed approach to AF repair holds the potential to maintain the long-term biomechanical function of the spine and prevent symptomatic re-herniation.

3.
J Clin Anesth ; 81: 110909, 2022 10.
Article in English | MEDLINE | ID: mdl-35738028

ABSTRACT

STUDY OBJECTIVE: To minimize the risk of cervical spinal cord injury in patients who have cervical spine pathology, minimizing cervical spine motion during laryngoscopy and tracheal intubation is commonly recommended. However, clinicians may better aim to reduce cervical spinal cord strain during airway management of their patients. The aim of this study was to predict laryngoscope force characteristics (location, magnitude, and direction) that would minimize cervical spine motions and cord strains. DESIGN: We utilized a computational model of the adult human cervical spine and spinal cord to predict intervertebral motions (rotation [flexion/extension] and translation [subluxation]) and cord strains (stretch and compression) during laryngoscopy. INTERVENTIONS: Routine direct (Macintosh) laryngoscopy conditions were defined by a specific force application location (mid-C3 vertebral body), magnitude (48.8 N), and direction (70 degrees). Sixty laryngoscope force conditions were simulated using 4 force locations (cephalad and caudad of routine), 5 magnitudes (25-200% of routine), and 3 directions (50, 70, 90 degrees). MAIN RESULTS: Under all conditions, extension at Oc-C1 and C1-C2 were greater than in all other cervical segments. Decreasing force magnitude to values reported for indirect laryngoscopes (8-17 N) decreased cervical extension to ~50% of routine values. The cervical cord was most likely to experience potentially injurious compressive strain at C3, but force magnitudes ≤50% of routine (≤24.4 N) decreased strain in C3 and all other cord regions to non-injurious values. Changing laryngoscope force locations and directions had minor effects on motion and strain. CONCLUSIONS: The model predicts clinicians can most effectively minimize cervical spine motion and cord strain during laryngoscopy by decreasing laryngoscope force magnitude. Very low force magnitudes (<5 N, ~10% of routine) are necessary to decrease overall cervical extension to <50% of routine values. Force magnitudes ≤24.4 N (≤50% of routine) are predicted to help prevent potentially injurious compressive cord strain.


Subject(s)
Laryngoscopes , Laryngoscopy , Adult , Biomechanical Phenomena , Cervical Vertebrae , Computer Simulation , Humans , Intubation, Intratracheal/adverse effects , Intubation, Intratracheal/methods , Laryngoscopes/adverse effects , Laryngoscopy/adverse effects , Laryngoscopy/methods , Spinal Cord
4.
Anesthesiology ; 135(6): 1055-1065, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34731240

ABSTRACT

BACKGROUND: In a closed claims study, most patients experiencing cervical spinal cord injury had stable cervical spines. This raises two questions. First, in the presence of an intact (stable) cervical spine, are there tracheal intubation conditions in which cervical intervertebral motions exceed physiologically normal maximum values? Second, with an intact spine, are there tracheal intubation conditions in which potentially injurious cervical cord strains can occur? METHODS: This study utilized a computational model of the cervical spine and cord to predict intervertebral motions (rotation, translation) and cord strains (stretch, compression). Routine (Macintosh) intubation force conditions were defined by a specific application location (mid-C3 vertebral body), magnitude (48.8 N), and direction (70 degrees). A total of 48 intubation conditions were modeled: all combinations of 4 force locations (cephalad and caudad of routine), 4 magnitudes (50 to 200% of routine), and 3 directions (50, 70, and 90 degrees). Modeled maximum intervertebral motions were compared to motions reported in previous clinical studies of the range of voluntary cervical motion. Modeled peak cord strains were compared to potential strain injury thresholds. RESULTS: Modeled maximum intervertebral motions occurred with maximum force magnitude (97.6 N) and did not differ from physiologically normal maximum motion values. Peak tensile cord strains (stretch) did not exceed the potential injury threshold (0.14) in any of the 48 force conditions. Peak compressive strains exceeded the potential injury threshold (-0.20) in 3 of 48 conditions, all with maximum force magnitude applied in a nonroutine location. CONCLUSIONS: With an intact cervical spine, even with application of twice the routine value of force magnitude, intervertebral motions during intubation did not exceed physiologically normal maximum values. However, under nonroutine high-force conditions, compressive strains exceeded potentially injurious values. In patients whose cords have less than normal tolerance to acute strain, compressive strains occurring with routine intubation forces may reach potentially injurious values.


Subject(s)
Biomechanical Phenomena/physiology , Cervical Vertebrae/physiology , Computer Simulation , Intubation, Intratracheal/adverse effects , Range of Motion, Articular/physiology , Spinal Cord/physiology , Cervical Vertebrae/injuries , Humans , Intubation, Intratracheal/methods , Laryngoscopy/adverse effects , Laryngoscopy/methods , Spinal Cord Injuries/etiology , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/prevention & control , Sprains and Strains/etiology , Sprains and Strains/physiopathology , Sprains and Strains/prevention & control
5.
JOR Spine ; 4(3): e1152, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34611587

ABSTRACT

BACKGROUND: In tissue engineering (TE) strategies, cell processes are regulated by mechanical stimuli. Although TE scaffolds have been developed to replicate tissue-level mechanical properties, it is intractable to experimentally measure and prescribe the cellular micromechanical environment (CME) generated within these constructs. Accordingly, this study aimed to fill this lack of understanding by modeling the CME in TE scaffolds using the finite element method. METHODS: A repeating unit of composite fiber scaffold for annulus fibrosus (AF) repair with a fibrin hydrogel matrix was prescribed a series of loading, material, and architectural parameters. The distribution of CME in the scaffold was predicted and compared to proposed target mechanics based on anabolic responses of AF cells. RESULTS: The multi-axial loading modality predicted the greatest percentage of cell volumes falling within the CME target envelope (%PTE) in the study (65 %PTE for 5.0% equibiaxial tensile strain with 50 kPa radial-direction compression; 7.6 %PTE without radial pressure). Additionally, the architectural scale had a moderate influence on the CME (maximum of 17 %PTE), with minimal change in the tissue-level properties of the scaffold. Scaffold materials and architectures had secondary influences on the predicted regeneration by modifying the tissue-level scaffold mechanics. CONCLUSIONS: Scaffold loading modality was identified as the critical factor for TE the AF. Scaffold materials and architecture were also predicted to modulate the scaffold loading and, therefore, control the CME indirectly. This study facilitated an improved understanding of the relationship between tissue-level and cell-level mechanics to drive anabolic cell responses for tissue regeneration.

6.
J Biomech ; 120: 110355, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33711600

ABSTRACT

Cell fate in tissue engineering (TE) strategies is paramount to regenerate healthy, functional organs. The mechanical loads experienced by cells play an important role in cell fate. However, in TE scaffolds with a cell-laden hydrogel matrix, it is prohibitively complex to prescribe and measure this cellular micromechanical environment (CME). Accordingly, this study aimed to develop a finite element (FE) model of a TE scaffold unit cell that can be subsequently implemented to predict the CME and cell fates under prescribed loading. The compressible hyperelastic mechanics of a fibrin hydrogel were characterized by fitting unconfined compression and confined compression experimental data. This material model was implemented in a unit cell FE model of a TE scaffold. The FE mesh and boundary conditions were evaluated with respect to the mechanical response of a region of interest (ROI). A compressible second-order reduced polynomial hyperelastic model gave the best fit to the experimental data (C10 = 1.72 × 10-4, C20 = 3.83 × 10-4, D1 = 3.41, D2 = 8.06 × 10-2). A mesh with seed sizes of 40 µm and 60 µm in the ROI and non-ROI regions, respectively, yielded a converged model in 54 min. The in-plane boundary conditions demonstrated minimal influence on ROI mechanics for a 2-by-2 unit cell. However, the out-of-plane boundary conditions did exhibit an appreciable influence on ROI mechanics for a two bilayer unit cell. Overall, the developed unit cell model facilitates the modeling of the mechanical state of a cell-laden hydrogel within a TE scaffold under prescribed loading. This model will be utilized to characterize the CME in future studies, and 3D micromechanical criteria may be applied to predict cell fate in these scaffolds.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Finite Element Analysis , Hydrogels , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...