Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38721903

ABSTRACT

We present a technique for measuring the interactions between pairs of colloidal particles in two optical traps. This method is particularly suitable for measuring strongly attractive potentials, an otherwise challenging task. The interaction energy is calculated from the distribution of inter-particle separations by accounting for the contribution from the optical traps with arbitrary trap profiles. The method is simple to implement and applicable to different types of pair potentials and optical trapping geometries. We apply the method to measure dipolar pair interactions in experiments with paramagnetic colloids in external magnetic fields. We obtain consistent and accurate results in all regimes, from strongly attractive to repulsive potentials. By means of computer simulations, we demonstrate that the proposed method can be successfully applied to systems with complex pair interactions characterized by multiple attractive and repulsive regimes, which are ubiquitous in soft and biological matter.

2.
Soft Matter ; 20(12): 2863-2870, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38465416

ABSTRACT

A capillarity-induced negative pressure is of general importance for understanding the phase behaviors of liquids in small pores and cracks. A unique example is the embolism in the xylem of plants and the cavitation at the limiting negative pressure generated by evaporation of water from nanocapillaries in the cell walls of leaves. In this work, by combining the effect of a capillary and cavitation together, we demonstrate with molecular dynamics (MD) simulations that capillarity is able to induce spontaneous cavitation in the presence of hydrophobic heterogeneities. Our simulation results reveal separately how the capillary generates a negative pressure and how the generated negative pressure affects the onset of cavitation. We then interpret the cavitation mechanism and determine the occurrence of cavitation as a function of the hydrophobicity of the nucleating substrates where the cavitation initiates and as a function of the hydrophilicity of the capillary tube from which the negative pressure generates. Our results reveal that the capillary-induced cavitation can be described well with a heterogeneous nucleation mechanism, within the framework of classical nucleation theory.

3.
Soft Matter ; 20(11): 2419-2441, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38420837

ABSTRACT

With the rapid development of studies involving droplet microfluidics, drug delivery, cell detection, and microparticle synthesis, among others, many scientists have invested significant efforts to model the flow of these fluid-filled bodies. Motivated by the intricate coupling between hydrodynamics and the interactions of fluid-filled bodies, several methods have been developed. The objective of this review is to present a compact foundation of the methods used in the literature in the context of lattice Boltzmann methods. For hydrodynamics, we focus on the lattice Boltzmann method due to its specific ability to treat time- and spatial-dependent boundary conditions and to incorporate new physical models in a computationally efficient way. We split the existing methods into two groups with regard to the interfacial boundary: fluid-structure and fluid-fluid methods. The fluid-structure methods are characterised by the coupling between fluid dynamics and mechanics of the flowing body, often used in applications involving membranes and similar flexible solid boundaries. We further divide fluid-structure-based methods into two subcategories, those which treat the fluid-structure boundary as a continuum medium and those that treat it as a discrete collection of individual springs and particles. Next, we discuss the fluid-fluid methods, particularly useful for the simulations of fluid-fluid interfaces. We focus on models for immiscible droplets and their interaction in a suspending fluid and describe benchmark tests to validate the models for fluid-filled bodies.

4.
Eur Phys J E Soft Matter ; 47(2): 15, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372943

ABSTRACT

We determine the local charge dynamics of a [Formula: see text] electrolyte embedded in a varying-section channel. By means of an expansion based on the length scale separation between the axial and transverse direction of the channel, we derive closed formulas for the local excess charge for both, dielectric and conducting walls, in 2D (planar geometry) as well as in 3D (cylindrical geometry). Our results show that, even at equilibrium, the local charge electroneutrality is broken whenever the section of the channel is not homogeneous for both dielectric and conducting walls as well as for 2D and 3D channels. Interestingly, even within our expansion, the local excess charge in the fluid can be comparable to the net charge on the walls. We critically discuss the onset of such local electroneutrality breakdown in particular with respect to the correction that it induces on the effective free energy profile experienced by tracer ions.

5.
Phys Rev E ; 109(1-1): 014618, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38366435

ABSTRACT

We study computationally the dynamics of forced, Brownian particles through a disordered system. As the concentration of mobile particles and/or fixed obstacles increase, we characterize the different regimes of flow and address how clogging develops. We show that clogging is preceded by a wide region of anomalous transport, characterized by a power law decay of intermittent bursts. We analyze the velocity distribution of the moving particles and show that this abnormal flow region is characterized by a coexistence between mobile and arrested particles, and their relative populations change smoothly as clogging is approached. The comparison of the regimes of anomalous transport and clogging with the corresponding scenarios of particles pushed through a single bottleneck show qualitatively the same trends highlighting the generality of the transport regimes leading to clogging.

6.
Nanoscale ; 16(5): 2444-2451, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38214073

ABSTRACT

The underlying mechanisms and physics of catalytic Janus microswimmers is highly complex, requiring details of the associated phoretic fields and the physiochemical properties of catalyst, particle, boundaries, and the fuel used. Therefore, developing a minimal (and more general) model capable of capturing the overall dynamics of these autonomous particles is highly desirable. In the presented work, we demonstrate that a coarse-grained dissipative particle-hydrodynamics model is capable of describing the behaviour of various chemical microswimmer systems. Specifically, we show how a competing balance between hydrodynamic interactions experienced by a squirmer in the presence of a substrate, gravity, and mass and shape asymmetries can reproduce a range of dynamics seen in different experimental systems. We hope that our general model will inspire further synthetic work where various modes of swimmer motion can be encoded via shape and mass during fabrication, helping to realise the still outstanding goal of microswimmers capable of complex 3-D behaviour.

7.
Sci Rep ; 13(1): 21391, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049532

ABSTRACT

Experiments performed using micro-patterned one dimensional collision assays have allowed a precise quantitative analysis of the collective manifestation of contact inhibition locomotion (CIL) wherein, individual migrating cells reorient their direction of motion when they come in contact with other cells. Inspired by these experiments, we present a discrete, minimal 1D Active spin model that mimics the CIL interaction between cells in one dimensional channels. We analyze the emergent collective behaviour of migrating cells in such confined geometries, as well as the sensitivity of the emergent patterns to driving forces that couple to cell motion. In the absence of vacancies, akin to dense cell packing, the translation dynamics is arrested and the model reduces to an equilibrium spin model which can be solved exactly. In the presence of vacancies, the interplay of activity-driven translation, cell polarity switching, and CIL results in an exponential steady cluster size distribution. We define a dimensionless Péclet number Q-the ratio of the translation rate and directional switching rate of particles in the absence of CIL. While the average cluster size increases monotonically as a function of Q, it exhibits a non-monotonic dependence on CIL strength, when the Q is sufficiently high. In the high Q limit, an analytical form of average cluster size can be obtained approximately by effectively mapping the system to an equivalent equilibrium process involving clusters of different sizes wherein the cluster size distribution is obtained by minimizing an effective Helmholtz free energy for the system. The resultant prediction of exponential dependence on CIL strength of the average cluster size and [Formula: see text] dependence of the average cluster size is borne out to reasonable accuracy as long as the CIL strength is not very large. The consequent prediction of a single scaling function of Q, particle density and CIL interaction strength, characterizing the distribution function of the cluster sizes and resultant data collapse is observed for a range of parameters.


Subject(s)
Contact Inhibition , Cell Movement/physiology
8.
Nano Lett ; 23(3): 850-857, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36689916

ABSTRACT

Magnetic nanorods driven by rotating fields in water can be rapidly steered along any direction while generating strong and localized hydrodynamic flow fields. Here we show that, when raising the frequency of the rotating field, these nanopropellers undergo a dynamic transition from a rolling to a kayak-like motion due to the increase in viscous drag and acquire a finite inclination angle with respect to the plane perpendicular to the bottom surface. We explain these experimental observations with a theoretical model which considers the nanorod as a pair of ferromagnetic particles hydrodynamically interacting with a close stationary surface. Further, we quantify how efficiently microscopic cargoes can be trapped or expelled from the moving nanorod and use numerical simulations to unveil the generated hydrodynamic flow field. These propulsion regimes can be implemented in microfluidic devices to perform precise operations based on the selective sorting of microscopic cargoes.

9.
Phys Rev E ; 108(6): L062601, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38243535

ABSTRACT

Block copolymer melts offer unique templates to control the position and alignment of nanoparticles due to their ability to self-assemble into periodic ordered structures. Active particles are shown to coassemble with block copolymers leading to emergent organized structures. The block copolymer acts as a soft template that can control the self-propulsion of active particles, both for interface-segregated and selective nanoparticles. At moderate activities, active particles can form organized structures such as polarized trains or rotating vortices. At high activity, the contrast in the polymeric and colloidal timescales can lead to particle swarms with distorted block copolymer morphology, due to the competition between polymeric self-assembly and active Brownian self-propulsion.

10.
J Chem Phys ; 157(22): 224905, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36546814

ABSTRACT

We derive a dynamical field theory for self-propelled particles subjected to generic torques and forces by explicitly coarse-graining their microscopic dynamics, described by a many-body Fokker-Planck equation. The model includes both intrinsic torques inducing self-rotation, as well as interparticle torques leading to, for instance, the local alignment of particles' orientations. Within this approach, although the functional form of the pairwise interactions does not need to be specified, one can directly map the parameters of the field theory onto the parameters of particle-based models. We perform a linear stability analysis of the homogeneous solution of the field equations and find both long-wavelength and short-wavelength instabilities. The former signals the emergence of a macroscopic structure, which we associate with motility-induced phase separation, while the second one signals the growth of a finite structure with a characteristic size. Intrinsic torques hinder phase separation, pushing the onset of the long-wavelength instability to higher activities. Furthermore, they generate finite-sized structures with a characteristic size proportional to both the self-propulsion velocity and the inverse of the self-rotation frequency. Our results show that a general mechanism might explain why chirality tends to suppress motility-induced phase separation but instead promotes the formation of non-equilibrium patterns.

11.
J Chem Phys ; 157(8): 084901, 2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36050019

ABSTRACT

Similar to cells, bacteria, and other micro-organisms, synthetic chemically active colloids can harness the energy from their environment through a surface chemical reaction and use the energy to self-propel in fluidic environments. In this paper, we study the chemo-mechanical coupling that leads to the self-propulsion of chemically active colloids. The coupling between chemical reactions and momentum transport is a consequence of Onsager reciprocal relations. They state that the velocity and the surface reaction rate are related to mechanical and chemical affinities through a symmetric matrix. A consequence of Onsager reciprocal relations is that if a chemical reaction drives the motion of the colloid, then an external force generates a reaction rate. Here, we investigate Onsager reciprocal relations for a spherical active colloid that catalyzes a reversible surface chemical reaction between two species. We solve the relevant transport equations using a perturbation expansion and numerical simulations to demonstrate the validity of reciprocal relations around the equilibrium. Our results are consistent with previous studies and highlight the key role of solute advection in preserving the symmetry of the Onsager matrix. Finally, we show that Onsager reciprocal relations break down around a nonequilibrium steady state, which has implications for the thermal fluctuations of the active colloids used in experiments.


Subject(s)
Colloids , Colloids/chemistry , Motion , Solutions
12.
Nano Lett ; 22(18): 7408-7414, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36062566

ABSTRACT

In viscous fluids, motile microentities such as bacteria or artificial swimmers often display different transport modes than macroscopic ones. A current challenge in the field aims at using friction asymmetry to steer the motion of microscopic particles. Here we show that lithographically shaped magnetic microtriangles undergo a series of complex transport modes when driven by a precessing magnetic field, including a surfing-like drift close to the bottom plane. In this regime, we exploit the triangle asymmetric shape to obtain a transversal drift which is later used to transport the microtriangle in any direction along the plane. We explain this friction-induced anisotropic sliding with a minimal numerical model capable to reproduce the experimental results. Due to the flexibility offered by soft-lithographic sculpturing, our method to guide anisotropic-shaped magnetic microcomposites can be potentially extended to many other field responsive structures operating in fluid media.


Subject(s)
Magnetic Fields , Magnetics , Anisotropy , Friction , Motion
13.
Soft Matter ; 18(29): 5388-5401, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35797661

ABSTRACT

We present a hydrodynamic theory for systems of dipolar active Brownian particles which, in the regime of weak dipolar coupling, predicts the onset of motility-induced phase separation (MIPS), consistent with Brownian dynamics (BD) simulations. The hydrodynamic equations are derived by explicitly coarse-graining the microscopic Langevin dynamics, thus allowing for a mapping of the coarse-grained model and particle-resolved simulations. Performing BD simulations at fixed density, we find that dipolar interactions tend to hinder MIPS, as first reported in [Liao et al., Soft Matter, 2020, 16, 2208]. Here we demonstrate that the theoretical approach indeed captures the suppression of MIPS. Moreover, the analysis of the numerically obtained, angle-dependent correlation functions sheds light into the underlying microscopic mechanisms leading to the destabilization of the homogeneous phase.

14.
Eur Phys J E Soft Matter ; 45(7): 60, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35819524

ABSTRACT

In the nanoscale regime, flow behaviors for liquids show qualitative deviations from bulk expectations. In this work, we reveal by molecular dynamics simulations that plug flow down to nanoscale induces molecular friction that leads to a new flow structure due to the molecular clogging of the encaged liquid. This plug-like nanoscale liquid flow shows several features differ from the macroscopic plug flow and Poiseuille flow: It leads to enhanced liquid/solid friction, producing a friction of several order of magnitude larger than that of Couette flow; the friction enhancement is sensitively dependent of the liquid column length and the wettability of the solid substrates; it leads to the local compaction of liquid molecules that may induce solidification phenomenon for a long liquid column.


Subject(s)
Molecular Dynamics Simulation , Friction
15.
Sci Adv ; 8(23): eabo4546, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35675407

ABSTRACT

Ratchet transport systems are widespread in physics and biology; however, the effect of the dispersing medium in the collective dynamics of these out-of-equilibrium systems has been often overlooked. We show that, in a traveling wave magnetic ratchet, long-range hydrodynamic interactions (HIs) produce a series of remarkable phenomena on the transport and assembly of interacting Brownian particles. We demonstrate that HIs induce the resynchronization with the traveling wave that emerges as a "speed-up" effect, characterized by a net raise of the translational speed, which doubles that of single particles. When competing with dipolar forces and the underlying substrate symmetry, HIs promote the formation of clusters that grow perpendicular to the driving direction. We support our findings both with Langevin dynamics and with a theoretical model that accounts for the fluid-mediated interactions. Our work illustrates the role of the dispersing medium on the dynamics of driven colloidal matter and unveils the growing process and cluster morphologies above a periodic substrate.

16.
Phys Rev Lett ; 128(21): 218001, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35687474

ABSTRACT

We show that arbitrarily large polar flocks are susceptible to the presence of a single small obstacle. In a wide region of parameter space, the obstacle triggers counterpropagating dense bands leading to reversals of the flow. In very large systems, these bands interact, yielding a never-ending chaotic dynamics that constitutes a new disordered phase of the system. While most of these results were obtained using simulations of aligning self-propelled particles, we find similar phenomena at the continuous level, not when considering the basic Toner-Tu hydrodynamic theory, but in simulations of truncations of the relevant Boltzmann equation.

17.
J Chem Phys ; 156(22): 224105, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35705409

ABSTRACT

We introduce a novel mesoscopic computational model based on a multiphase-multicomponent lattice Boltzmann method for the simulation of self-phoretic particles in the presence of liquid-liquid interfaces. Our model features fully resolved solvent hydrodynamics, and, thanks to its versatility, it can handle important aspects of the multiphysics of the problem, including particle wettability and differential solubility of the product in the two liquid phases. The method is extensively validated in simple numerical experiments, whose outcome is theoretically predictable, and then applied to the study of the behavior of active particles next to and trapped at interfaces. We show that their motion can be variously steered by tuning relevant control parameters, such as the phoretic mobilities, the contact angle, and the product solubility.

18.
Soft Matter ; 18(29): 5371-5379, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35762424

ABSTRACT

Artificial active particles are autonomous agents able to convert energy from the environment into net propulsion, breaking detailed balance and the action-reaction law, clear signatures of their out-of-equilibrium nature. Here we investigate the emergence of directed motion in clusters composed of passive and catalytically active apolar colloids. We use a light-induced chemophoretic flow to rapidly assemble hybrid self-propelling clusters composed of hematite particles and passive silica spheres. By increasing the size of the passive cargo, we observe a reversal in the transport direction of the pair. We explain this complex yet rich phenomenon using a theoretical model which accounts for the generated chemical field and its coupling with the surrounding medium. We exploit further our technique to build up more complex, chemically driven, architectures capable of carrying several passive or active species, that quickly assemble and disassemble under light control.

19.
Polymers (Basel) ; 14(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35567080

ABSTRACT

Block copolymer melts are perfect candidates to template the position of colloidal nanoparticles in the nanoscale, on top of their well-known suitability for lithography applications. This is due to their ability to self-assemble into periodic ordered structures, in which nanoparticles can segregate depending on the polymer-particle interactions, size and shape. The resulting coassembled structure can be highly ordered as a combination of both the polymeric and colloidal properties. The time-dependent Ginzburg-Landau model for the block copolymer was combined with Brownian dynamics for nanoparticles, resulting in an efficient mesoscopic model to study the complex behaviour of block copolymer nanocomposites. This review covers recent developments of the time-dependent Ginzburg-Landau/Brownian dynamics scheme. This includes efforts to parallelise the numerical scheme and applications of the model. The validity of the model is studied by comparing simulation and experimental results for isotropic nanoparticles. Extensions to simulate nonspherical and inhomogeneous nanoparticles are discussed and simulation results are discussed. The time-dependent Ginzburg-Landau/Brownian dynamics scheme is shown to be a flexible method which can account for the relatively large system sizes required to study block copolymer nanocomposite systems, while being easily extensible to simulate nonspherical nanoparticles.

20.
Soft Matter ; 18(19): 3638-3643, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35514297

ABSTRACT

Block copolymer nanocomposites including anisotropic nanoparticles have been previously found to co-assemble into complex structures with nanoparticle alignment. Anisotropic nanoparticles with large aspect ratios are found to modify the morphology of block copolymers at modest concentrations, inducing a sphere-to-cylinder phase transition by breaking the local symmetry in the vicinity of a solid particle. This transition takes place over a wide range of NP lengths comparable with the BCP spacing. Controlling the orientation of uniaxial nanoparticles provides additional control over the global orientation of the block copolymer, as previously reported by experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...