Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Access Microbiol ; 6(4)2024.
Article in English | MEDLINE | ID: mdl-38737800

ABSTRACT

Staphylococcus epidermidis is one of the predominant bacterial contaminants in platelet concentrates (PCs), a blood component used to treat bleeding disorders. PCs are a unique niche that triggers biofilm formation, the main pathomechanism of S. epidermidis infections. We performed whole genome sequencing of four S. epidermidis strains isolated from skin of healthy human volunteers (AZ22 and AZ39) and contaminated PCs (ST10002 and ST11003) to unravel phylogenetic relationships and decipher virulence mechanisms compared to 24 complete S. epidermidis genomes in GenBank. AZ39 and ST11003 formed a separate unique lineage with strains 14.1 .R1 and SE95, while AZ22 formed a cluster with 1457 and ST10002 closely grouped with FDAAGOS_161. The four isolates were assigned to sequence types ST1175, ST1174, ST73 and ST16, respectively. All four genomes exhibited biofilm-associated genes ebh, ebp, sdrG, sdrH and atl. Additionally, AZ22 had sdrF and aap, whereas ST10002 had aap and icaABCDR. Notably, AZ39 possesses truncated ebh and sdrG and harbours a toxin-encoding gene. All isolates carry multiple antibiotic resistance genes conferring resistance to fosfomycin (fosB), ß-lactams (blaZ) and fluoroquinolones (norA). This study reveales a unique lineage for S. epidermidis and provides insight into the genetic basis of virulence and antibiotic resistance in transfusion-associated S. epidermidis strains.

2.
BMC Genomics ; 24(1): 361, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37370007

ABSTRACT

BACKGROUND: The reliability of culture-independent pathogen detection in foods using metagenomics is contingent on the quality and composition of the reference database. The inclusion of microbial sequences from a diverse representation of taxonomies in universal reference databases is recommended to maximize classification precision for pathogen detection. However, these sizable databases have high memory requirements that may be out of reach for some users. In this study, we aimed to assess the performance of a foodborne pathogen (FBP)-specific reference database (taxon-specific) relative to a universal reference database (taxon-agnostic). We tested our FBP-specific reference database's performance for detecting Listeria monocytogenes in two complex food matrices-ready-to-eat (RTE) turkey deli meat and prepackaged spinach-using three popular read-based DNA-to-DNA metagenomic classifiers: Centrifuge, Kraken 2 and KrakenUniq. RESULTS: In silico host sequence removal led to substantially fewer false positive (FP) classifications and higher classification precision in RTE turkey deli meat datasets using the FBP-specific reference database. No considerable improvement in classification precision was observed following host filtering for prepackaged spinach datasets and was likely a consequence of a higher microbe-to-host sequence ratio. All datasets classified with Centrifuge using the FBP-specific reference database had the lowest classification precision compared to Kraken 2 or KrakenUniq. When a confidence-scoring threshold was applied, a nearly equivalent precision to the universal reference database was achieved for Kraken 2 and KrakenUniq. Recall was high for both reference databases across all datasets and classifiers. Substantially fewer computational resources were required for metagenomics-based detection of L. monocytogenes using the FBP-specific reference database, especially when combined with Kraken 2. CONCLUSIONS: A universal (taxon-agnostic) reference database is not essential for accurate and reliable metagenomics-based pathogen detection of L. monocytogenes in complex food matrices. Equivalent classification performance can be achieved using a taxon-specific reference database when the appropriate quality control measures, classification software, and analysis parameters are applied. This approach is less computationally demanding and more attainable for the broader scientific and food safety communities.


Subject(s)
Listeria monocytogenes , Listeria monocytogenes/genetics , Spinacia oleracea , Food Microbiology , Metagenomics , Reproducibility of Results , Meat
3.
Microorganisms ; 10(6)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35744717

ABSTRACT

Salmonella enterica subsp. enterica serovar Bovismorbificans has caused multiple outbreaks involving the consumption of produce, hummus, and processed meat products worldwide. To elucidate the intra-serovar genomic structure of S. Bovismorbificans, a core-genome analysis with 2690 loci (based on 150 complete genomes representing Salmonella enterica serovars developed as part of this study) and a k-mer-binning based strategy were carried out on 95 whole genome sequencing (WGS) assemblies from Swiss, Canadian, and USA collections of S. Bovismorbificans strains from foodborne infections. Data mining of a digital DNA tiling array of legacy SARA and SARB strains was conducted to identify near-neighbors of S. Bovismorbificans. The core genome analysis and the k-mer-binning methods identified two polyphyletic clusters, each with emerging evolutionary properties. Four STs (2640, 142, 1499, and 377), which constituted the majority of the publicly available WGS datasets from >260 strains analyzed by k-mer-binning based strategy, contained a conserved core genome backbone with a different evolutionary lineage as compared to strains comprising the other cluster (ST150). In addition, the assortment of genotypic features contributing to pathogenesis and persistence, such as antimicrobial resistance, prophage, plasmid, and virulence factor genes, were assessed to understand the emerging characteristics of this serovar that are relevant clinically and for food safety concerns. The phylogenomic profiling of polyphyletic S. Bovismorbificans in this study corresponds to intra-serovar variations observed in S. Napoli and S. Newport serovars using similar high-resolution genomic profiling approaches and contributes to the understanding of the evolution and sequence divergence of foodborne Salmonellae. These intra-serovar differences may have to be thoroughly understood for the accurate classification of foodborne Salmonella strains needed for the uniform development of future food safety mitigation strategies.

4.
Microbiol Resour Announc ; 10(45): e0084021, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34761952

ABSTRACT

We present the genome sequence of Staphylococcus aureus CI/BAC/25/13/W, which was isolated in 2013 as a contaminant of a platelet concentrate with abnormal clotting at the National Health Service Blood and Transplant. Assessment of the genome sequence showed the presence of one chromosome (2,719,347 bp) and one plasmid (1,533 bp).

5.
Microbiol Resour Announc ; 10(45): e0084121, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34761954

ABSTRACT

We report the genome sequence of Staphylococcus aureus PS/BAC/169/17/W, which was isolated in 2017 from a contaminated platelet concentrate at the National Health Service Blood and Transplant. Assessment of the genome sequence of this strain showed the presence of a 2,753,746-bp chromosome and a plasmid of 2,762 bp.

6.
Microbiol Resour Announc ; 10(35): e0057721, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34472978

ABSTRACT

We present the genome sequence of Staphylococcus aureus strain PS/BAC/317/16/W, which was isolated from contaminated platelet concentrates by the National Health Service Blood and Transplant in England (2017). Genome sequence analysis revealed the presence of one chromosome (2,665,983 bp) and two plasmids (4,265 bp and 2,921 bp) in this strain.

7.
Microbiol Resour Announc ; 10(34): e0028821, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34435853

ABSTRACT

We present the genome sequence of Staphylococcus aureus strain CBS2016-05, which was isolated from contaminated platelet concentrates by Canadian Blood Services in 2016. This strain caused a septic reaction in an acute leukemia patient. Genome sequence analysis revealed the presence of one chromosome (2,766,936 bp) and one plasmid (36,441 bp).

8.
Front Microbiol ; 11: 561204, 2020.
Article in English | MEDLINE | ID: mdl-33101235

ABSTRACT

Cronobacter species are opportunistic pathogens capable of causing life-threatening infections in humans, with serious complications arising in neonates, infants, immuno-compromised individuals, and elderly adults. The genus is comprised of seven species: Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis, Cronobacter universalis, and Cronobacter condimenti. Despite a multiplicity of genomic data for the genus, little is known about likely transmission vectors. Using DNA microarray analysis, in parallel with whole genome sequencing, and targeted PCR analyses, the total gene content of two C. malonaticus, three C. turicensis, and 14 C. sakazaki isolated from various filth flies was assessed. Phylogenetic relatedness among these and other strains obtained during surveillance and outbreak investigations were comparatively assessed. Specifically, microarray analysis (MA) demonstrated its utility to cluster strains according to species-specific and sequence type (ST) phylogenetic relatedness, and that the fly strains clustered among strains obtained from clinical, food and environmental sources from United States, Europe, and Southeast Asia. This combinatorial approach was useful in data mining for virulence factor genes, and phage genes and gene clusters. In addition, results of plasmidotyping were in agreement with the species identity for each strain as determined by species-specific PCR assays, MA, and whole genome sequencing. Microarray and BLAST analyses of Cronobacter fly sequence datasets were corroborative and showed that the presence and absence of virulence factors followed species and ST evolutionary lines even though such genes were orthologous. Additionally, zebrafish infectivity studies showed that these pathotypes were as virulent to zebrafish embryos as other clinical strains. In summary, these findings support a striking phylogeny amongst fly, clinical, and surveillance strains isolated during 2010-2015, suggesting that flies are capable vectors for transmission of virulent Cronobacter spp.; they continue to circulate among United States and European populations, environments, and that this "pattern of circulation" has continued over decades.

9.
PLoS One ; 15(8): e0236807, 2020.
Article in English | MEDLINE | ID: mdl-32760141

ABSTRACT

Listeria monocytogenes is the etiological agent of listeriosis, a major foodborne disease and an important public health concern. Contamination of meat with L. monocytogenes occurs frequently at the slaughterhouse. Our aims were; 1) to investigate the distribution of L. monocytogenes in the processing areas of four swine slaughterhouses; 2) to describe the diversity of L. monocytogenes strains by pulsed-field gel electrophoresis; 3) to identify persistent L. monocytogenes strains and describe their distribution; 4) to investigate the associations between persistence of strains and their following characteristics: detection in food isolates, detection in human clinical isolates, and the presence of benzalkonium chloride (BAC) resistance genes. Various operation areas within the four swine slaughterhouses were sampled on four occasions. A total of 2496 samples were analyzed, and L. monocytogenes was successfully isolated from 243 samples. The proportion of positive samples ranged from 32 to 58% in each slaughterhouse and from 24 to 68% in each operation area. Fifty-eight different pulsotypes were identified and eight pulsotypes, present in samples collected during 4 visits, were considered persistent. The persistent pulsotypes were significantly more likely to be detected in food (P < 0.01, exact χ²) and human clinical cases (P < 0.01, exact χ²), respectively. Among pulsotypes harboring the BAC bcrABC resistance cassette or the emrE multidrug transporter gene, 42.8% were persistent compared to 4.5% for pulsotypes without these resistance genes (P < 0.01, exact χ²). Our study highlights the importance of persistent L. monocytogenes strains in the environmental contamination of slaughterhouses, which may lead to repeated contamination of meat products. It also shows that the presence of disinfectants resistance genes is an important contributing factor.


Subject(s)
Food Microbiology , Listeria monocytogenes/physiology , Listeriosis/diagnosis , Meat/microbiology , Abattoirs , Animals , Benzalkonium Compounds/pharmacology , Drug Resistance, Bacterial/genetics , Electrophoresis, Gel, Pulsed-Field , Food Handling , Humans , Listeria monocytogenes/drug effects , Listeria monocytogenes/isolation & purification , Listeriosis/microbiology , Microbial Sensitivity Tests , Serogroup , Swine
10.
J Food Prot ; 83(8): 1296-1301, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32221532

ABSTRACT

ABSTRACT: The ecology of Listeria monocytogenes has been previously investigated in various whole and minimally processed raw vegetables, but not in turnips. A 2018 national Canadian recall for packaged fresh-cut turnips contaminated with L. monocytogenes raised concerns about turnips being able to support the growth of this microorganism. Thus, this study examined the growth potential of L. monocytogenes in fresh-cut turnips stored at 4 and 10°C. The bacterial microbiota of each brand of purchased turnips was also partially determined to evaluate the diversity of bacteria present on the product. Turnips were mist inoculated at an initial level of 3.0 log CFU/g using a five-strain L. monocytogenes cocktail. Samples were then stored at either 4 or 10°C for 10 days, with enumeration occurring at 0, 5, and 10 days. L. monocytogenes did grow on turnips stored at 10°C, with increases ranging from 0.87 to 1.84 log CFU/g over the 10-day storage period (P < 0.05). In contrast, L. monocytogenes was able to survive but not grow on turnips stored at 4°C for 10 days. This study reinforces the importance of strict temperature control within processing, retail, and household consumer settings. Avoiding temperature abuse conditions and storing packaged fresh-cut turnips under refrigerator conditions (≤4°C) can serve as an important hurdle to prevent and/or limit the growth of L. monocytogenes on these products.


Subject(s)
Brassica napus , Listeria monocytogenes , Canada , Colony Count, Microbial , Consumer Product Safety , Food Handling , Food Microbiology , Temperature
11.
Can J Microbiol ; 65(11): 842-850, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31356758

ABSTRACT

Whole genome sequencing (WGS) is rapidly replacing other molecular techniques for identifying and subtyping bacterial isolates. The resolution or discrimination offered by WGS is significantly higher than that offered by other molecular techniques, and WGS readily allows infrequent differences that occur between 2 closely related strains to be found. In this investigation, WGS was used to identify the changes that occurred in the genomes of 13 strains of bacterial foodborne pathogens after 100 serial subcultures. Pure cultures of Shiga-toxin-producing Escherichia coli, Salmonella enterica, Listeria monocytogenes, and Vibrio parahaemolyticus were subcultured daily for 100 successive days. The 1st and 100th subcultures were whole-genome sequenced using short-read sequencing. Single nucleotide polymorphisms (SNPs) were identified between the 1st and final culture using 2 different approaches, and multilocus sequence typing of the whole genome was also performed to detect any changes at the allelic level. The number of observed genomic changes varied by strain, species, and the SNP caller used. This study provides insight into the genomic variation that can be detected using next-generation sequencing and analysis methods after repeated subculturing of 4 important bacterial pathogens.


Subject(s)
Escherichia coli/genetics , Genome, Bacterial , Listeria monocytogenes/genetics , Salmonella enterica/genetics , Vibrio parahaemolyticus/genetics , Escherichia coli/growth & development , Listeria monocytogenes/growth & development , Multilocus Sequence Typing , Polymorphism, Single Nucleotide , Salmonella enterica/growth & development , Shiga-Toxigenic Escherichia coli/genetics , Vibrio parahaemolyticus/growth & development , Whole Genome Sequencing
12.
Microb Genom ; 5(1)2019 01.
Article in English | MEDLINE | ID: mdl-30648944

ABSTRACT

The persuasiveness of genomic evidence has pressured scientific agencies to supplement or replace well-established methodologies to inform public health and food safety decision-making. This study of 52 epidemiologically defined Listeria monocytogenes isolates, collected between 1981 and 2011, including nine outbreaks, was undertaken (1) to characterize their phylogenetic relationship at finished genome-level resolution, (2) to elucidate the underlying genetic diversity within an endemic subtype, CC8, and (3) to re-evaluate the genetic relationship and epidemiology of a CC8-delimited outbreak in Canada in 2008. Genomes representing Canadian Listeria outbreaks between 1981 and 2010 were closed and manually annotated. Single nucleotide variants (SNVs) and horizontally acquired traits were used to generate phylogenomic models. Phylogenomic relationships were congruent with classical subtyping and epidemiology, except for CC8 outbreaks, wherein the distribution of SNV and prophages revealed multiple co-evolving lineages. Chronophyletic reconstruction of CC8 evolution indicates that prophage-related genetic changes among CC8 strains manifest as PFGE subtype reversions, obscuring the relationship between CC8 isolates, and complicating the public health interpretation of subtyping data, even at maximum genome resolution. The size of the shared genome interrogated did not change the genetic relationship measured between highly related isolates near the tips of the phylogenetic tree, illustrating the robustness of these approaches for routine public health applications where the focus is recent ancestry. The possibility exists for temporally and epidemiologically distinct events to appear related even at maximum genome resolution, highlighting the continued importance of epidemiological evidence.


Subject(s)
Databases, Nucleic Acid , Genome, Bacterial , Listeria monocytogenes/genetics , Listeriosis/genetics , Phylogeny , Prophages/genetics , Sequence Analysis, DNA , Canada , DNA, Bacterial/genetics , Disease Outbreaks , Humans , Listeriosis/epidemiology
13.
Nucleic Acids Res ; 45(18): e159, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29048594

ABSTRACT

The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using 'big data' approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune's loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune.


Subject(s)
Bacteria/genetics , Computational Biology/methods , DNA Mutational Analysis/methods , Genetic Association Studies , Microbiological Techniques/methods , Sequence Analysis, DNA/methods , Software , Bacillus anthracis/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Transcriptome , Vibrio cholerae/genetics
14.
Int J Circumpolar Health ; 76(1): 1380994, 2017.
Article in English | MEDLINE | ID: mdl-28982302

ABSTRACT

Botulism in Nunavik, Quebec is associated with the consumption of aged marine mammal meat and fat. The objective was to identify meat handling practices presenting a risk of contamination of seal meat with C. botulinum. Potential sources of contamination were assessed through interviews with igunaq producers from five communities of Nunavik. These sources were verified by detection and isolation of C. botulinum from igunaq prepared in the field from seal carcasses. Interviews indicated practices presenting a risk for contamination included: placing meat or fat on coastal rocks, using seawater for rinsing, and ageing meat in inverted seal skin pouches. Although the presence of C. botulinum type E spores was detected in only two of 32 (6.3%) meat or fat samples collected during the butchering process, two of four igunaq preparations from these samples contained type E botulinum toxin. Analysis of C. botulinum type E isolates recovered from these preparations indicated that shoreline soil may be a source of contamination. Seal meat and fat may be contaminated with C. botulinum type E during the butchering process. Measures can be adopted to reduce the risks of contamination in the field and possibly decrease the incidence of type E botulism in Nunavik.


Subject(s)
Clostridium botulinum type E/isolation & purification , Food Handling/methods , Food Microbiology , Meat/microbiology , Seals, Earless , Adult , Aged , Aged, 80 and over , Animals , Arctic Regions , Female , Food Safety/methods , Humans , Interviews as Topic , Male , Middle Aged , Quebec , Seawater/microbiology , Skin/microbiology , Soil Microbiology
15.
PLoS One ; 12(9): e0185437, 2017.
Article in English | MEDLINE | ID: mdl-28953937

ABSTRACT

Produce has become a major source of foodborne illness, and may become contaminated through surface water irrigation. The objectives of this study were to (i) determine the frequency of verotoxigenic E. coli (VTEC), Listeria monocytogenes, and Salmonella in surface waters used for irrigation in the Lower Mainland of British Columbia, (ii) assess the suitability of fecal coliforms and generic E. coli as hygiene indicators, and (iii) investigate the correlations of environmental factors with pathogen occurrence. Water samples were collected semi-monthly for 18 months from seven irrigation ditches across the Serpentine and Sumas watersheds. VTEC colonies on water filters were detected using a verotoxin colony immunoblot, and the presence of virulence genes vt1 and vt2 was ascertained via multiplex PCR. Detection of L. monocytogenes and Salmonella was completed using standard, Health Canada Compendium of Analytical Methods. Fecal coliforms and generic E. coli were enumerated by 3M™ Petrifilm™ and filtration methods, and meteorological and geographic data were collected from government records. VTEC, L. monocytogenes, and Salmonella were detected in 4.93%, 10.3%, and 2.69% of 223 samples, respectively. L. monocytogenes occurrence was greatest in the Serpentine watershed (χ2; p < 0.05), and was most common during the winter and fall (Fisher exact test; p < 0.05). Site dependence of VTEC and Salmonella occurrence was observed within watersheds (Fisher's exact test; p < 0.10). Pathogen occurrence correlated with fecal coliform counts (r = 0.448), while VTEC occurrence also correlated with precipitation over the five days before sampling (r = 0.239). The density of upstream livestock correlated with VTEC (rs = 0.812), and L. monocytogenes (rs = 0.841) detection. These data show that foodborne pathogens are present in the waters used for irrigation in the Lower Mainland of British Columbia, but their frequency may depend on spatial and temporal factors.


Subject(s)
Agricultural Irrigation , Escherichia coli/isolation & purification , Listeria monocytogenes/isolation & purification , Salmonella/isolation & purification , Water Microbiology , British Columbia , Colony Count, Microbial
16.
Front Microbiol ; 8: 1069, 2017.
Article in English | MEDLINE | ID: mdl-28725217

ABSTRACT

A trend towards the abandonment of obtaining pure culture isolates in frontline laboratories is at a crossroads with the ability of public health agencies to perform their basic mandate of foodborne disease surveillance and response. The implementation of culture-independent diagnostic tests (CIDTs) including nucleic acid and antigen-based assays for acute gastroenteritis is leaving public health agencies without laboratory evidence to link clinical cases to each other and to food or environmental substances. This limits the efficacy of public health epidemiology and surveillance as well as outbreak detection and investigation. Foodborne outbreaks have the potential to remain undetected or have insufficient evidence to support source attribution and may inadvertently increase the incidence of foodborne diseases. Next-generation sequencing of pure culture isolates in clinical microbiology laboratories has the potential to revolutionize the fields of food safety and public health. Metagenomics and other 'omics' disciplines could provide the solution to a cultureless future in clinical microbiology, food safety and public health. Data mining of information obtained from metagenomics assays can be particularly useful for the identification of clinical causative agents or foodborne contamination, detection of AMR and/or virulence factors, in addition to providing high-resolution subtyping data. Thus, metagenomics assays may provide a universal test for clinical diagnostics, foodborne pathogen detection, subtyping and investigation. This information has the potential to reform the field of enteric disease diagnostics and surveillance and also infectious diseases as a whole. The aim of this review will be to present the current state of CIDTs in diagnostic and public health laboratories as they relate to foodborne illness and food safety. Moreover, we will also discuss the diagnostic and subtyping utility and concomitant bias limitations of metagenomics and comparable detection techniques in clinical microbiology, food and public health laboratories. Early advances in the discipline of metagenomics, however, have indicated noteworthy challenges. Through forthcoming improvements in sequencing technology and analytical pipelines among others, we anticipate that within the next decade, detection and characterization of pathogens via metagenomics-based workflows will be implemented in routine usage in diagnostic and public health laboratories.

17.
Microarrays (Basel) ; 6(1)2017 Mar 04.
Article in English | MEDLINE | ID: mdl-28273858

ABSTRACT

Cronobacter (previously known as Enterobacter sakazakii) is a genus of Gram-negative, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped bacteria of the family Enterobacteriaceae. These organisms cause a variety of illnesses such as meningitis, necrotizing enterocolitis, and septicemia in neonates and infants, and urinary tract, wound, abscesses or surgical site infections, septicemia, and pneumonia in adults. The total gene content of 379 strains of Cronobacter spp. and taxonomically-related isolates was determined using a recently reported DNA microarray. The Cronobacter microarray as a genotyping tool gives the global food safety community a rapid method to identify and capture the total genomic content of outbreak isolates for food safety, environmental, and clinical surveillance purposes. It was able to differentiate the seven Cronobacter species from one another and from non-Cronobacter species. The microarray was also able to cluster strains within each species into well-defined subgroups. These results also support previous studies on the phylogenic separation of species members of the genus and clearly highlight the evolutionary sequence divergence among each species of the genus compared to phylogenetically-related species. This review extends these studies and illustrates how the microarray can also be used as an investigational tool to mine genomic data sets from strains. Three case studies describing the use of the microarray are shown and include: (1) the determination of allelic differences among Cronobacter sakazakii strains possessing the virulence plasmid pESA3; (2) mining of malonate and myo-inositol alleles among subspecies of Cronobacter dublinensis strains to determine subspecies identity; and (3) lastly using the microarray to demonstrate sequence divergence and phylogenetic relatedness trends for 13 outer-membrane protein alleles among 240 Cronobacter and phylogenetically-related strains. The goal of this review is to describe microarrays as a robust tool for genomics research of this assorted and important genus, a criterion toward the development of future preventative measures to eliminate this foodborne pathogen from the global food supply.

18.
Appl Environ Microbiol ; 82(22): 6768-6778, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27613687

ABSTRACT

Protein antigens expressed on the surface of all strains of Listeria monocytogenes and absent from nonpathogenic Listeria spp. are presumably useful targets for pathogen identification, detection, and isolation using specific antibodies (Abs). To seek such surface proteins expressed in various strains of L. monocytogenes for diagnostic applications, we focused on a set of surface proteins known to be involved or putatively involved in L. monocytogenes virulence and identified Listeria adhesion protein B (LapB) as a candidate based on the bioinformatics analysis of whole-genome sequences showing that the gene coding for LapB was present in L. monocytogenes strains and absent from strains of other Listeria spp. Immunofluorescence microscopy (IFM), performed with rabbit polyclonal antibodies against the recombinant LapB protein (rLapB) of L. monocytogenes serotype 4b strain L10521, confirmed expression of LapB on the surface. A panel of 48 mouse monoclonal antibodies (MAbs) to rLaB was generated, and 7 of them bound strongly to the surface of L. monocytogenes cells as demonstrated using IFM. Further characterization of these 7 anti-LapB MAbs, using an enzyme-linked immunosorbent assay (ELISA), revealed that 6 anti-LapB MAbs (M3484, M3495, M3500, M3509, M3517, and M3519) reacted strongly with 46 (86.8%) of 53 strains representing 10 of the 12 serotypes tested (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4ab, 4b, 4d, and 4e). These results indicate that LapB, together with companion anti-LapB MAbs, can be targeted as a biomarker for the detection and isolation of various L. monocytogenes strains from contaminated foods. IMPORTANCE: Strains of L. monocytogenes are traditionally grouped into serotypes. Identification of a surface protein expressed in all or the majority of at least 12 serotypes would aid in the development of surface-binding monoclonal antibodies (MAbs) for detection and isolation of L. monocytogenes from foods. Bioinformatics analysis revealed that the gene coding for Listeria adhesion protein B (LapB), a surface protein involved in L. monocytogenes virulence, was present in L. monocytogenes strains and absent from other Listeria spp. Polyclonal antibodies against recombinant LapB (rLapB) detected the exposed epitopes on the surface of L. monocytogenes Production and extensive assessment of 48 MAbs to rLapB showed that 6 anti-LapB MAbs (M3484, M3495, M3500, M3509, M3517, and M3519) detected the expression of LapB in a wide range of L. monocytogenes isolates representing 10 of 12 serotypes tested, suggesting that LapB, together with specific MAbs, can be targeted as a biomarker for pathogen detection and isolation.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Bacterial Proteins/analysis , Listeria monocytogenes/metabolism , Membrane Proteins/analysis , Animals , Antibody Specificity , Antigens, Bacterial/immunology , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Biomarkers , Computational Biology , Enzyme-Linked Immunosorbent Assay , Epitopes , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Listeria monocytogenes/classification , Listeria monocytogenes/immunology , Listeria monocytogenes/pathogenicity , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Microscopy, Fluorescence , Serogroup , Serotyping , Virulence
19.
Genome Announc ; 4(5)2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27634991

ABSTRACT

Listeria monocytogenes is a pathogenic bacterium of importance to public health and food safety agencies. We present the genome sequence of the serotype 1/2a L. monocytogenes food isolate HPB913, which was collected in Canada in 1993 as part of an investigation into a sporadic case of foodborne illness.

20.
Clin Microbiol Rev ; 29(4): 837-57, 2016 10.
Article in English | MEDLINE | ID: mdl-27559074

ABSTRACT

The epidemiological investigation of a foodborne outbreak, including identification of related cases, source attribution, and development of intervention strategies, relies heavily on the ability to subtype the etiological agent at a high enough resolution to differentiate related from nonrelated cases. Historically, several different molecular subtyping methods have been used for this purpose; however, emerging techniques, such as single nucleotide polymorphism (SNP)-based techniques, that use whole-genome sequencing (WGS) offer a resolution that was previously not possible. With WGS, unlike traditional subtyping methods that lack complete information, data can be used to elucidate phylogenetic relationships and disease-causing lineages can be tracked and monitored over time. The subtyping resolution and evolutionary context provided by WGS data allow investigators to connect related illnesses that would be missed by traditional techniques. The added advantage of data generated by WGS is that these data can also be used for secondary analyses, such as virulence gene detection, antibiotic resistance gene profiling, synteny comparisons, mobile genetic element identification, and geographic attribution. In addition, several software packages are now available to generate in silico results for traditional molecular subtyping methods from the whole-genome sequence, allowing for efficient comparison with historical databases. Metagenomic approaches using next-generation sequencing have also been successful in the detection of nonculturable foodborne pathogens. This review addresses state-of-the-art techniques in microbial WGS and analysis and then discusses how this technology can be used to help support food safety investigations. Retrospective outbreak investigations using WGS are presented to provide organism-specific examples of the benefits, and challenges, associated with WGS in comparison to traditional molecular subtyping techniques.


Subject(s)
Disease Outbreaks , Food Microbiology , Food Safety , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Genomics/methods , Humans , Molecular Epidemiology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...