Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 16(9): 1654-1662, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34423964

ABSTRACT

Marine tunicates produce defensive amino-acid-derived metabolites, including 2-(3,5-diiodo-4-methoxyphenyl)ethan-1-amine (DIMTA), but their mechanisms of action are rarely known. Using an assay-guided approach, we found that out of the many different sensory cells in the mouse dorsal root ganglion (DRG), DIMTA selectively affected low-threshold cold thermosensors. Whole-cell electrophysiology experiments using DRG cells, channels expressed in Xenopus oocytes, and human cell lines revealed that DIMTA blocks several potassium channels, reducing the magnitude of the afterhyperpolarization and increasing the baseline intracellular calcium concentration [Ca2+]i of low-threshold cold thermosensors. When injected into mice, DIMTA increased the threshold of cold sensation by >3 °C. DIMTA may thus serve as a lead in the further design of compounds that inhibit problems in the cold-sensory system, such as cold allodynia and other neuropathic pain conditions.


Subject(s)
Amines/metabolism , Calcium Channels/metabolism , Sensory Receptor Cells/metabolism , Amines/administration & dosage , Animals , Calcium/metabolism , Ganglia, Spinal/metabolism , Male , Mice , Patch-Clamp Techniques , Signal Transduction , Thermosensing/physiology , Urochordata , Vertebrates
2.
ACS Chem Neurosci ; 12(14): 2693-2704, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34213884

ABSTRACT

In our efforts to discover new drugs to treat pain, we identified molleamines A-E (1-5) as major neuroactive components of the sea slug, Pleurobranchus forskalii, and their prey, Didemnum molle, tunicates. The chemical structures of molleamines were elucidated by spectroscopy and confirmed by the total synthesis of molleamines A (1) and C (3). Synthetic 3 completely blocked acetylcholine-induced calcium flux in peptidergic nociceptors (PNs) in the somatosensory nervous system. Compound 3 affected neither the α7 nAChR nor the muscarinic acetylcholine receptors in calcium flux assays. In addition to nociceptors, 3 partially blocked the acetylcholine-induced calcium flux in the sympathetic nervous system, including neurons from the superior cervical ganglion. Electrophysiology revealed a block of α3ß4 (mouse) and α6/α3ß4 (rat) nicotinic acetylcholine receptors (nAChRs), with IC50 values of 1.4 and 3.1 µM, respectively. Molleamine C (3) is a partial antagonist, reaching a maximum block of 76-82% of the acetylcholine signal and showing no partial agonist response. Molleamine C (3) may thus provide a lead compound for the development of neuroactive compounds with unique biological properties.


Subject(s)
Receptors, Nicotinic , Urochordata , Animals , Aplysia , Mice , Nicotinic Antagonists/pharmacology , Nylons , Rats , alpha7 Nicotinic Acetylcholine Receptor
3.
J Med Chem ; 64(10): 7033-7043, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33949869

ABSTRACT

In a program to identify pain treatments with low addiction potential, we isolated five steroids, conosteroids A-E (1-5), from the hypobranchial gland of the mollusk Conus geographus. Compounds 1-5 were active in a mouse dorsal root ganglion (DRG) assay that suggested that they might be analgesic. A synthetic analogue 6 was used for a detailed pharmacological study. Compound 6 significantly increased the pain threshold in mice in the hot-plate test at 2 and 50 mg/kg. Compound 6 at 500 nM antagonizes type-A γ-aminobutyric acid receptors (GABAARs). In a patch-clamp experiment, out of the six subunit combinations tested, 6 exhibited subtype selectivity, most strongly antagonizing α1ß1γ2 and α4ß3γ2 receptors (IC50 1.5 and 1.0 µM, respectively). Although the structures of 1-6 differ from those of known neuroactive steroids, they are cell-type-selective modulators of GABAARs, expanding the known chemical space of neuroactive steroids.


Subject(s)
Analgesics/chemistry , Conus Snail/chemistry , GABA Antagonists/chemistry , Neurosteroids/chemistry , Receptors, GABA/chemistry , Action Potentials/drug effects , Analgesics/chemical synthesis , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Conus Snail/metabolism , Disease Models, Animal , GABA Antagonists/isolation & purification , GABA Antagonists/pharmacology , GABA Antagonists/therapeutic use , Ganglia, Spinal/cytology , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Mice , Mice, Inbred C57BL , Molecular Conformation , Neurosteroids/isolation & purification , Neurosteroids/pharmacology , Neurosteroids/therapeutic use , Pain/chemically induced , Pain/drug therapy , Pain/pathology , Protein Subunits/chemistry , Protein Subunits/metabolism , Receptors, GABA/metabolism
4.
J Nat Prod ; 82(3): 550-558, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30730742

ABSTRACT

Current treatment options for bacterial infections are dependent on antibiotics that inhibit microbial growth and viability. These approaches result in the evolution of drug-resistant strains of bacteria. An anti-infective strategy that is less likely to lead to the development of resistance is the disruption of quorum sensing mechanisms, which are involved in promoting virulence. The goal of this study was to identify fungal metabolites effective as quorum sensing inhibitors. Three new prenylated diresorcinols (1-3), along with two known compounds, (4 R) -regiolone and decarboxycitrinone, were isolated from a freshwater fungus (Helotiales sp.) from North Carolina. Their structures were assigned on the basis of HRESIMS and NMR experiments. The structure of compound 1 was confirmed via X-ray diffraction analysis, and its absolute configuration was established by TDDFT-ECD and optical rotation calculations. Compounds 1-3 suppressed quorum sensing in a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA), with IC50 values ranging from 0.3 to 12.5 µM. These compounds represent potential leads in the development of antivirulence therapeutics.


Subject(s)
Bacteria/drug effects , Quorum Sensing/drug effects , Resorcinols/pharmacology , Fungi/drug effects , Prenylation , Resorcinols/chemistry
5.
Bioorg Med Chem ; 25(20): 5238-5246, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28802670

ABSTRACT

Griseofulvin is a fungal metabolite and antifungal drug used for the treatment of dermatophytosis in both humans and animals. Recently, griseofulvin and its analogues have attracted renewed attention due to reports of their potential anticancer effects. In this study griseofulvin (1) and related analogues (2-6, with 4 being new to literature) were isolated from Xylaria cubensis. Six fluorinated analogues (7-12) were synthesized, each in a single step using the isolated natural products and Selectflour, so as to examine the effects of fluorine incorporation on the bioactivities of this structural class. The isolated and synthesized compounds were screened for activity against a panel of cancer cell lines (MDA-MB-435, MDA-MB-231, OVCAR3, and Huh7.5.1) and for antifungal activity against Microsporum gypseum. A comparison of the chemical space occupied by the natural and fluorinated analogues was carried out by using principal component analysis, documenting that the isolated and fluorinated analogues occupy complementary regions of chemical space. However, the most active compounds, including two fluorinated derivatives, were centered around the chemical space that was occupied by the parent compound, griseofulvin, suggesting that modifications must preserve certain attributes of griseofulvin to conserve its activity.


Subject(s)
Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Griseofulvin/pharmacology , Medical Informatics , Microsporum/drug effects , Xylariales/chemistry , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Griseofulvin/chemistry , Griseofulvin/isolation & purification , Halogenation , Humans , Microbial Sensitivity Tests , Molecular Structure , Principal Component Analysis , Structure-Activity Relationship , Tumor Cells, Cultured
6.
J Antibiot (Tokyo) ; 70(5): 553-561, 2017 May.
Article in English | MEDLINE | ID: mdl-28074050

ABSTRACT

Effective and rapid dereplication is a hallmark of present-day drug discovery from natural sources. This project strove to both decrease the time and expand the structural diversity associated with dereplication methodologies. A 5 min liquid chromatographic run time employing heated electrospray ionization (HESI) was evaluated to determine whether it could be used as a faster alternative over the 10 min ESI method we reported previously. Results revealed that the 5 min method was as sensitive as the 10 min method and, obviously, was twice as fast. To facilitate dereplication, the retention times, UV absorption maxima, full-scan HRMS and MS/MS were cross-referenced with an in-house database of over 300 fungal secondary metabolites. However, this strategy was dependent upon the makeup of the screening in-house database. Thus, mass defect filtering (MDF) was explored as an additional targeted screening strategy to permit identification of structurally related components. The use of a dereplication platform incorporating the 5 min chromatographic method together with MDF facilitated rapid and effective identification of known compounds and detection of structurally related analogs in extracts of fungal cultures.


Subject(s)
Biological Products/chemistry , Chromatography, Liquid/methods , Drug Discovery/methods , Fungi/metabolism , Secondary Metabolism , Biological Products/analysis , Databases, Factual , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Time Factors
7.
Magn Reson Chem ; 55(7): 670-676, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28024162

ABSTRACT

Analysis of complex mixtures is a common challenge in natural products research. Quantitative nuclear magnetic resonance spectroscopy offers analysis of complex mixtures at early stages and with benefits that are orthogonal to more common methods of quantitation, including ultraviolet absorption spectroscopy and mass spectrometry. Several experiments were conducted to construct a methodology for use in analysis of extracts of fungal cultures. A broadly applicable method was sought for analysis of both pure and complex samples through use of an externally calibrated method. This method has the benefit of not contaminating valuable samples with the calibrant, and it passed scrutiny for line fitting and reproducibility. The method was implemented to measure the yield of griseofulvin and dechlorogriseofulvin from three fungal isolates. An isolate of Xylaria cubensis (coded MSX48662) was found to biosynthesize griseofulvin in the greatest yield, 149 ± 8 mg per fermentation, and was selected for further supply experiments. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Biological Products/analysis , Fungi/metabolism , Magnetic Resonance Spectroscopy/methods , Anthraquinones/analysis , Anthraquinones/metabolism , Ascomycota/chemistry , Ascomycota/metabolism , Biological Products/metabolism , Fermentation , Fungi/chemistry , Griseofulvin/analysis , Griseofulvin/metabolism , Metabolomics , Reproducibility of Results , Secondary Metabolism
8.
Phytochemistry ; 126: 59-65, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26988728

ABSTRACT

The exploration of freshwater ascomycetes, which have undergone only limited investigation, may provide opportunities both to characterize new genera/species of fungi and to uncover new chemical diversity. In this study, seven acetophenone derivatives, madisone, 4'-methoxymadisone, dehydromadisone, 2″-methoxymadisone, dihydroallovisnaginone, dimadisone, and 4'-methoxydimadisone were characterized from an organic extract of a recently described Lindgomyces madisonensis (G416) culture, which was isolated from submerged wood collected in a stream in North Carolina. Madisone, dehydromadisone, 2″-methoxymadisone, dimadisone and 4'-demethoxydimadisone have not been reported previously, while 4'-methoxymadisone and dihydroallovisnaginone were previously unknown as natural products. Their structures were assigned on the basis of NMR and HRESIMS data, with the structure of madisone supported by X-ray crystallography. The antimicrobial activities of madisone, 4'-methoxymadisone and dihydroallovisnaginone were evaluated against a panel of bacteria and fungi. A heat map analysis of the surface of a G416 culture showed that most of the isolated compounds concentrated in the guttate compared with the vegetative mycelium of the fungus.


Subject(s)
Acetophenones/isolation & purification , Ascomycota/chemistry , Acetophenones/chemistry , Aspergillus niger/drug effects , Candida albicans/drug effects , Crystallography, X-Ray , Escherichia coli/drug effects , Fresh Water , Microbial Sensitivity Tests , Molecular Conformation , Molecular Structure , Mycobacterium smegmatis/drug effects , North Carolina , Nuclear Magnetic Resonance, Biomolecular , Phylogeny , Spores, Fungal , Staphylococcus aureus/drug effects , Wood/microbiology
9.
Drug Metab Dispos ; 43(11): 1734-43, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26316643

ABSTRACT

Plant-based therapeutics, including herbal products, continue to represent a growing facet of the contemporary health care market. Mechanistic descriptions of the pharmacokinetics and pharmacodynamics of constituents composing these products remain nascent, particularly for metabolites produced following herbal product ingestion. Generation and characterization of authentic metabolite standards are essential to improve the quantitative mechanistic understanding of herbal product disposition in both in vitro and in vivo systems. Using the model herbal product, milk thistle, the objective of this work was to biosynthesize multimilligram quantities of glucuronides of select constituents (flavonolignans) to fill multiple knowledge gaps in the understanding of herbal product disposition and action. A partnership between clinical pharmacology and natural products chemistry expertise was leveraged to optimize reaction conditions for efficient glucuronide formation and evaluate alternate enzyme and reagent sources to improve cost effectiveness. Optimized reaction conditions used at least one-fourth the amount of microsomal protein (from bovine liver) and cofactor (UDP glucuronic acid) compared with typical conditions using human-derived subcellular fractions, providing substantial cost savings. Glucuronidation was flavonolignan-dependent. Silybin A, silybin B, isosilybin A, and isosilybin B generated five, four, four, and three monoglucuronides, respectively. Large-scale synthesis (40 mg of starting material) generated three glucuronides of silybin A: silybin A-7-O-ß-D-glucuronide (15.7 mg), silybin A-5-O-ß-D-glucuronide (1.6 mg), and silybin A-4´´-O-ß-D-glucuronide (11.1 mg). This optimized, cost-efficient method lays the foundation for a systematic approach to synthesize and characterize herbal product constituent glucuronides, enabling an improved understanding of mechanisms underlying herbal product disposition and action.


Subject(s)
Flavonolignans/chemical synthesis , Glucuronides/chemical synthesis , Microsomes, Liver/enzymology , Plant Extracts/chemical synthesis , Silybum marianum/enzymology , Animals , Cattle , Flavonolignans/isolation & purification , Glucuronides/isolation & purification , Humans , Plant Extracts/isolation & purification
10.
Arq Gastroenterol ; 51(1): 64-7, 2014.
Article in English | MEDLINE | ID: mdl-24760067

ABSTRACT

CONTEXT: Ulcer is the most common gastrointestinal disturbance resulting from an inadequate gastric mucosal defense. Several drugs are available in the market to address the disease; however, these drugs are associated with unnecessary side effects. OBJECTIVES: Previous research have confirmed the efficacy of plant extracts for possible treatment of the disease. This research aims to evaluate the anti-ulcer properties of medicinal plants. METHODS: Methanol extracts from the leaves of Intsia bijuga, Cynometra ramiflora, Tamarindus indica, Cassia javanica, Cassia fistula, Bauhini purpurea, Senna spectabilis, Senna siamea and Saraca thaipingensis were evaluated for their anti-ulcer activity using HCl-ethanol as ulcerogen. RESULTS: All extracts showed inhibitory activity with I. bijuga, T. indica, S. spectabilis and S. thaipingensis exhibiting more than 50% inhibition. S. thaipingensis showed the highest activity at 80%. S. spectabilis and S. thaipingensis were partitioned further into hexane, ethyl acetate and aqueous fractions. The aqueous and ethyl acetate fractions of S. spectabilis showed significant increased in its activity while the hexane and ethyl acetate fractions of S. thaipingensis gave higher activity than its aqueous portions. CONCLUSIONS: We conclude that plant extracts are potential sources of new anti-ulcer agents.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Fabaceae/chemistry , Plant Extracts/therapeutic use , Stomach Ulcer/drug therapy , Animals , Disease Models, Animal , Fabaceae/classification , Mice
11.
Arq. gastroenterol ; 51(1): 64-67, Jan-Mar/2014. tab, graf
Article in English | LILACS | ID: lil-707004

ABSTRACT

Context Ulcer is the most common gastrointestinal disturbance resulting from an inadequate gastric mucosal defense. Several drugs are available in the market to address the disease; however, these drugs are associated with unnecessary side effects. Objectives Previous research have confirmed the efficacy of plant extracts for possible treatment of the disease. This research aims to evaluate the anti-ulcer properties of medicinal plants. Methods Methanol extracts from the leaves of Intsia bijuga, Cynometra ramiflora, Tamarindus indica, Cassia javanica, Cassia fistula, Bauhini purpurea, Senna spectabilis, Senna siamea and Saraca thaipingensis were evaluated for their anti-ulcer activity using HCl-ethanol as ulcerogen. Results All extracts showed inhibitory activity with I. bijuga, T. indica, S. spectabilis and S. thaipingensis exhibiting more than 50% inhibition. S. thaipingensis showed the highest activity at 80%. S. spectabilis and S. thaipingensis were partitioned further into hexane, ethyl acetate and aqueous fractions. The aqueous and ethyl acetate fractions of S. spectabilis showed significant increased in its activity while the hexane and ethyl acetate fractions of S. thaipingensis gave higher activity than its aqueous portions. Conclusions We conclude that plant extracts are potential sources of new anti-ulcer agents. .


Contexto A úlcera é o distúrbio gastrointestinal mais comum que resulta de uma inadequada defesa da mucosa gástrica. Vários medicamentos estão disponíveis no mercado para tratar a doença, no entanto, estas drogas podem se associar a efeitos colaterais desnecessários. Objetivos Pesquisas anteriores confirmaram a eficácia de extratos de plantas como possível tratamento da doença. Esta pesquisa teve como objetivo avaliar as propriedades anti-úlcera de plantas medicinais. Métodos Extratos alcoólicos das folhas da Intsia bijuga, Cynometra ramiflora, Tamarindus indica, Cassia javanica, Cassia fistula, Bauhini purpurea, Senna spectabilis, Senna siamea e Saraca thaipingensis foram avaliados pela sua atividade anti-úlcera usando o HCl-etanol como ulcerogênico. Resultados Todos os extratos apresentaram atividade inibitória; I.bijuga, T. Índica, S. spectabilis e S. thaipingensis mostraram mais de 50% de inibição. A S. thaipingensis mostrou a maior atividade, atingindo 80%. S. spectabilis e S. thaipingensis foram divididos mais em hexano, acetato de etila e frações aquosas. As frações aquosas e acetato de etila de S. spectabilis mostraram aumento significativo em sua atividade, enquanto que as frações hexano e acetato de etila de S. thaipingensis resultaram em maior atividade do que em partes aquosas. Conclusões Pode-se concluir que os extratos vegetais são fontes potenciais de novos agentes anti-úlcera. .


Subject(s)
Animals , Mice , Anti-Ulcer Agents/therapeutic use , Fabaceae/chemistry , Plant Extracts/therapeutic use , Stomach Ulcer/drug therapy , Disease Models, Animal , Fabaceae/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...