Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS J ; 17(6): 1446-54, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26265093

ABSTRACT

Decisions about efficacy and safety of therapeutic proteins (TP) designed to target soluble ligands are made in part by their ex vivo quantification. Ligand binding assays (LBAs) are critical tools in measuring serum TP levels in pharmacokinetic, toxicokinetic, and pharmacodynamic studies. This study evaluated the impact of reagent antibody affinities, assay incubation times, and analytical platform on free or total TP quantitation. An ELISA-based LBA that measures monoclonal anti-sclerostin antibody (TPx) was used as the model system. To determine whether the method measures free or total TPx, the effects of K on, K off, and K D were determined. An 8:1 molar ratio of sclerostin (Scl) to TPx compared to a 1:1 molar ratio produced by rabbit polyclonal antibodies to TPx was required to achieve IC50, a measure of TPx interference effectiveness, making it unclear whether the ELISA truly measured free TPx. Kinetic analysis revealed that Scl had a rapid dissociation rate (K off) from TPx and that capture and detection antibodies had significantly higher binding affinities (K D) to TPx. These kinetic limitations along with long ELISA incubation times lead to the higher molar ratios (8:1) required for achieving 50% inhibition of TPx. However, a microfluidic platform with the same reagent pairs required shorter incubations to achieve a lower Scl IC50 molar ratio (1:1). The findings from this study provide the bioanalytical community with a deeper understanding of how reagent and platform selection for LBAs can affect what a particular method measures, either free or total TP concentrations.


Subject(s)
Antibodies, Monoclonal/blood , Antibodies, Monoclonal/pharmacokinetics , Bone Morphogenetic Proteins/blood , Bone Morphogenetic Proteins/pharmacokinetics , Adaptor Proteins, Signal Transducing , Animals , Enzyme-Linked Immunosorbent Assay/methods , Genetic Markers , Humans , Ligands , Mice , Protein Binding/physiology
2.
Cell Metab ; 22(3): 508-15, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26190651

ABSTRACT

We discovered recently that the central metabolite α-ketoglutarate (α-KG) extends the lifespan of C. elegans through inhibition of ATP synthase and TOR signaling. Here we find, unexpectedly, that (R)-2-hydroxyglutarate ((R)-2HG), an oncometabolite that interferes with various α-KG-mediated processes, similarly extends worm lifespan. (R)-2HG accumulates in human cancers carrying neomorphic mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes. We show that, like α-KG, both (R)-2HG and (S)-2HG bind and inhibit ATP synthase and inhibit mTOR signaling. These effects are mirrored in IDH1 mutant cells, suggesting a growth-suppressive function of (R)-2HG. Consistently, inhibition of ATP synthase by 2-HG or α-KG in glioblastoma cells is sufficient for growth arrest and tumor cell killing under conditions of glucose limitation, e.g., when ketone bodies (instead of glucose) are supplied for energy. These findings inform therapeutic strategies and open avenues for investigating the roles of 2-HG and metabolites in biology and disease.


Subject(s)
Adenosine Triphosphatases/metabolism , Caenorhabditis elegans/physiology , Glioblastoma/metabolism , Glutarates/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Proliferation , Glioblastoma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Longevity , Mutation
3.
Methods Mol Biol ; 1263: 287-98, 2015.
Article in English | MEDLINE | ID: mdl-25618353

ABSTRACT

Drug affinity responsive target stability (DARTS) is a relatively quick and straightforward approach to identify potential protein targets for small molecules. It relies on the protection against proteolysis conferred on the target protein by interaction with a small molecule. The greatest advantage of this method is being able to use the native small molecule without having to immobilize or modify it (e.g., by incorporation of biotin, fluorescent, radioisotope, or photoaffinity labels). Here we describe in detail the protocol for performing unbiased DARTS with complex protein lysates to identify binding targets of small molecules and for using DARTS-Western blotting to test, screen, or validate potential small-molecule targets. Although the ideas have mainly been developed from studying molecules in areas of biology that are currently of interest to us and our collaborators, the general principles should be applicable to the analysis of all molecules in nature.


Subject(s)
Ligands , Proteins/chemistry , Proteomics/methods , Small Molecule Libraries , Protein Binding , Proteins/metabolism , Reproducibility of Results
4.
Nature ; 510(7505): 397-401, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24828042

ABSTRACT

Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit ß is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit ß and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.


Subject(s)
Caenorhabditis elegans/drug effects , Ketoglutaric Acids/pharmacology , Longevity/physiology , Mitochondrial Proton-Translocating ATPases/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , HEK293 Cells , Humans , Jurkat Cells , Longevity/drug effects , Longevity/genetics , Mice , Mitochondrial Proton-Translocating ATPases/genetics , Protein Binding
5.
Cell Cycle ; 12(18): 3013-24, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23974104

ABSTRACT

Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA(+)/CD24(-/low)/CD44(+) cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.


Subject(s)
Antineoplastic Agents/toxicity , Apoptosis/drug effects , Disulfiram/toxicity , Antigens, Neoplasm/metabolism , CD24 Antigen/genetics , CD24 Antigen/metabolism , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cellular Senescence/drug effects , Doxorubicin/toxicity , Drug Synergism , Epithelial Cell Adhesion Molecule , Female , High-Throughput Screening Assays , Humans , Hyaluronan Receptors/metabolism , MCF-7 Cells , Molecular Motor Proteins/metabolism , Myosin Heavy Chains/metabolism , Neoplastic Stem Cells/metabolism , Protein Binding , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , ras GTPase-Activating Proteins/metabolism
6.
Breast Cancer Res ; 12(2): R18, 2010.
Article in English | MEDLINE | ID: mdl-20211017

ABSTRACT

INTRODUCTION: HJURP (Holliday Junction Recognition Protein) is a newly discovered gene reported to function at centromeres and to interact with CENPA. However its role in tumor development remains largely unknown. The goal of this study was to investigate the clinical significance of HJURP in breast cancer and its correlation with radiotherapeutic outcome. METHODS: We measured HJURP expression level in human breast cancer cell lines and primary breast cancers by Western blot and/or by Affymetrix Microarray; and determined its associations with clinical variables using standard statistical methods. Validation was performed with the use of published microarray data. We assessed cell growth and apoptosis of breast cancer cells after radiation using high-content image analysis. RESULTS: HJURP was expressed at higher level in breast cancer than in normal breast tissue. HJURP mRNA levels were significantly associated with estrogen receptor (ER), progesterone receptor (PR), Scarff-Bloom-Richardson (SBR) grade, age and Ki67 proliferation indices, but not with pathologic stage, ERBB2, tumor size, or lymph node status. Higher HJURP mRNA levels significantly decreased disease-free and overall survival. HJURP mRNA levels predicted the prognosis better than Ki67 proliferation indices. In a multivariate Cox proportional-hazard regression, including clinical variables as covariates, HJURP mRNA levels remained an independent prognostic factor for disease-free and overall survival. In addition HJURP mRNA levels were an independent prognostic factor over molecular subtypes (normal like, luminal, Erbb2 and basal). Poor clinical outcomes among patients with high HJURP expression were validated in five additional breast cancer cohorts. Furthermore, the patients with high HJURP levels were much more sensitive to radiotherapy. In vitro studies in breast cancer cell lines showed that cells with high HJURP levels were more sensitive to radiation treatment and had a higher rate of apoptosis than those with low levels. Knock down of HJURP in human breast cancer cells using shRNA reduced the sensitivity to radiation treatment. HJURP mRNA levels were significantly correlated with CENPA mRNA levels. CONCLUSIONS: HJURP mRNA level is a prognostic factor for disease-free and overall survival in patients with breast cancer and is a predictive biomarker for sensitivity to radiotherapy.


Subject(s)
Breast Neoplasms/radiotherapy , DNA-Binding Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/radiation effects , Biomarkers, Tumor/analysis , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Disease-Free Survival , Female , Humans , Oligonucleotide Array Sequence Analysis , Predictive Value of Tests , Prognosis , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL