Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569608

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) affects about 20-40% of the adult population in high-income countries and is now a leading indication for liver transplantation and can lead to hepatocellular carcinoma. The link between gut microbiota dysbiosis and NAFLD is now clearly established. Through analyses of the gut microbiota with shotgun metagenomics, we observe that compared to healthy controls, Adlercreutzia equolifaciens is depleted in patients with liver diseases such as NAFLD. Its abundance also decreases as the disease progresses and eventually disappears in the last stages indicating a strong association with disease severity. Moreover, we show that A. equolifaciens possesses anti-inflammatory properties, both in vitro and in vivo in a humanized mouse model of NAFLD. Therefore, our results demonstrate a link between NAFLD and the severity of liver disease and the presence of A. equolifaciens and its anti-inflammatory actions. Counterbalancing dysbiosis with this bacterium may be a promising live biotherapeutic strategy for liver diseases.


Subject(s)
Gastrointestinal Microbiome , Liver Neoplasms , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Dysbiosis/microbiology , Liver/metabolism , Metabolic Diseases/metabolism , Liver Neoplasms/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism
2.
J Gastroenterol Hepatol ; 37(5): 832-840, 2022 May.
Article in English | MEDLINE | ID: mdl-35266174

ABSTRACT

BACKGROUND AND AIM: Expression of FimH adhesin by invasive Escherichia coli in the gastrointestinal tract of patients with Crohn's disease (CD) facilitates binding to epithelial glycoproteins and release of pro-inflammatory cytokines. Sibofimloc is a first-in-class FimH blocker that showed little systemic absorption in healthy volunteers. The current study evaluated systemic absorption, safety, and effect on inflammatory biomarkers of sibofimloc in patients with CD. METHODS: This was an open-label, multicenter phase 1b study in adults with active CD. In part 1, two patients received a single oral dose of 3000-mg sibofimloc followed by 1500 mg b.i.d. for 13 days. In part 2, six patients received 1500-mg sibofimloc b.i.d. for 13 days. Blood was drawn for pharmacokinetic and biomarker analysis, and stool was collected for biomarker and microbiome analysis. RESULTS: Eight patients with active ileal or ileocolonic CD were enrolled into the study. Systemic sibofimloc exposure was low. Sibofimloc was well tolerated with only grade 1-2 events observed. Several pro-inflammatory biomarkers, including IL-1ß, IL-6, IL-8, TNF-α, IFN-γ, and calprotectin, were decreased in stool by end of study. CONCLUSIONS: This first study of the novel FimH blocker, sibofimloc, in patients with active CD demonstrated minimal systemic exposure with good tolerance, while decreasing several inflammatory biomarkers. EudraCT number: 2017-003279-70.


Subject(s)
Crohn Disease , Adhesins, Escherichia coli/metabolism , Adhesins, Escherichia coli/pharmacology , Adult , Anti-Bacterial Agents , Biomarkers , Crohn Disease/drug therapy , Crohn Disease/metabolism , Escherichia coli , Fimbriae Proteins/metabolism , Fimbriae Proteins/pharmacology , Fimbriae Proteins/therapeutic use , Humans
3.
Microorganisms ; 9(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477939

ABSTRACT

Non-alcoholic fatty liver diseases (NAFLD) are associated with changes in the composition and metabolic activities of the gut microbiota. However, the causal role played by the gut microbiota in individual susceptibility to NAFLD and particularly at its early stage is still unclear. In this context, we transplanted the microbiota from a patient with fatty liver (NAFL) and from a healthy individual to two groups of mice. We first showed that the microbiota composition in recipient mice resembled the microbiota composition of their respective human donor. Following administration of a high-fructose, high-fat diet, mice that received the human NAFL microbiota (NAFLR) gained more weight and had a higher liver triglycerides level and higher plasma LDL cholesterol than mice that received the human healthy microbiota (HR). Metabolomic analyses revealed that it was associated with lower and higher plasma levels of glycine and 3-Indolepropionic acid in NAFLR mice, respectively. Moreover, several bacterial genera and OTUs were identified as differently represented in the NAFLR and HR microbiota and therefore potentially responsible for the different phenotypes observed. Altogether, our results confirm that the gut bacteria play a role in obesity and steatosis development and that targeting the gut microbiota may be a preventive or therapeutic strategy in NAFLD management.

SELECTION OF CITATIONS
SEARCH DETAIL
...