Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Curr Zool ; 70(1): 98-108, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38476142

ABSTRACT

A core assumption of sexual selection theory is that sexually selected weapons, specialized morphological structures used directly in male contests, can improve an individual's reproductive success but only if the bearer can overcome associated costs, the negative effects on the bearer's fitness components. However, recent studies have shown that producing and wielding exaggerated weapons may not necessarily be costly. Rather, some traits can be selected for supporting, or compensating for, the expense of producing and wielding such exaggerated weapons. In the ant-mimicking jumping spider Myrmarachne gisti, exaggerated chelicerae are borne only by adult males and not females, showing sexual dimorphism and steep positive allometry with body size. Here, we determine the potential benefits of bearing exaggerated chelicerae during male contests and explore the potential for costs in terms of prey-capture efficiency and compensation between chelicera size and neighboring trait size. While males with longer chelicerae won most of their male-male contests, we found no significant differences in prey-capture efficiency between males and females regardless of whether prey was winged or flightless. Males' elongated chelicerae thus do not impede their efficiency at capturing prey. Furthermore, we found that the sizes of all neighboring traits are positively correlated with chelicera size, suggesting that these traits may be under correlational selection. Taken together, our findings suggest that M. gisti males armed with the exaggerated chelicerae that function as weapons win more fights at limited cost for performance in prey capture and compensate for neighboring structures.

2.
Biol Lett ; 19(11): 20230207, 2023 11.
Article in English | MEDLINE | ID: mdl-37964578

ABSTRACT

Sexual selection has driven the evolution of weaponry for males to fight rivals to gain access to females. Although weapons are predicted to increase males' reproductive success, they are also expected to incur costs and may impair functional activities, including foraging. Using feeding assays, we tested whether the enlarged mandibles of Auckland tree weta (Hemideina thoracica) impact feeding activity (the total volume of biomass consumed, bite rate, and number of foraging visits) and foraging behaviour (time spent moving, feeding, or stationary). We predicted that increased head capsule size in male weta would hinder their foraging efficacy. However, we found that weta with longer heads fed at a faster rate and spent less time foraging than weta with smaller heads, regardless of sex. Contrary to expectations that weapons impede functional activities, our results demonstrate that exaggerated traits can improve feeding performance and may offer benefits other than increased mating success.


Subject(s)
Orthoptera , Animals , Female , Male , Mandible
3.
Behav Ecol ; 34(4): 613-620, 2023.
Article in English | MEDLINE | ID: mdl-37434639

ABSTRACT

Intraspecific weapon polymorphisms that arise via conditional thresholds may be affected by juvenile experience such as predator encounters, yet this idea has rarely been tested. The New Zealand harvestman Forsteropsalis pureora has three male morphs: majors (alphas and betas) are large-bodied with large chelicerae used in male-male contests, while minors (gammas) are small-bodied with small chelicerae and scramble to find mates. Individuals use leg autotomy to escape predators and there is no regeneration of the missing leg. Here, we tested whether juvenile experience affects adult morph using leg autotomy scars as a proxy of predator encounters. Juvenile males that lost at least one leg (with either locomotory or sensory function) had a 45 times higher probability of becoming a minor morph at adulthood than intact juvenile males. Leg loss during development may affect foraging, locomotion, and/or physiology, potentially linking a juvenile's predator encounters to their final adult morph and future reproductive tactic.

4.
Curr Biol ; 32(16): R871-R873, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35998593

ABSTRACT

In the internet era, the digital architecture that keeps us connected and informed may also amplify the spread of misinformation. This problem is gaining global attention, as evidence accumulates that misinformation may interfere with democratic processes and undermine collective responses to environmental and health crises1,2. In an increasingly polluted information ecosystem, understanding the factors underlying the generation and spread of misinformation is becoming a pressing scientific and societal challenge3. Here, we studied the global spread of (mis-)information on spiders using a high-resolution global database of online newspaper articles on spider-human interactions, covering stories of spider-human encounters and biting events published from 2010-20204. We found that 47% of articles contained errors and 43% were sensationalist. Moreover, we show that the flow of spider-related news occurs within a highly interconnected global network and provide evidence that sensationalism is a key factor underlying the spread of misinformation.


Subject(s)
Social Media , Spiders , Animals , Communication , Ecosystem , Humans , Spiders/physiology
5.
Curr Zool ; 68(3): 325-334, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35592341

ABSTRACT

In aggressive mimicry, a predator accesses prey by mimicking the appearance and/or behavior of a harmless or beneficial model in order to avoid being correctly identified by its prey. The crab spider genus Phrynarachne is often cited as a textbook example of masquerading as bird droppings (BDs) in order to avoid predation. However, Phrynarachne spiders may also aggressively mimic BDs in order to deceive potential prey. To date, there is no experimental evidence to support aggressive mimicry in masquerading crab spiders; therefore, we performed a field survey, a manipulative field experiment, and visual modeling to test this hypothesis using Phrynarachne ceylonica. We compared prey-attraction rates among BDs, spiders, and control empty leaves in the field. We found that although all prey combined and agromyzid dipterans, in particular, were attracted to BDs at a higher rate than to spiders, other dipterans and hymenopterans were attracted to BDs at a similar rate as to spiders. Both spiders and BDs attracted insects at a significantly higher rate than did control leaves. As predicted, prey was attracted to experimentally blackened or whitened spiders significantly less frequently than to unmanipulated spiders. Finally, visual modeling suggested that spiders and BDs can be detected by dipterans and hymenopterans against background leaves, but they are indistinguishable from each other. Taken together, our results suggest that insects lured by spiders may misidentify them as BDs, and bird-dropping masquerading may serve as aggressive mimicry in addition to predator avoidance in P. ceylonica.

6.
Sci Data ; 9(1): 109, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347145

ABSTRACT

Mass media plays an important role in the construction and circulation of risk perception associated with animals. Widely feared groups such as spiders frequently end up in the spotlight of traditional and social media. We compiled an expert-curated global database on the online newspaper coverage of human-spider encounters over the past ten years (2010-2020). This database includes information about the location of each human-spider encounter reported in the news article and a quantitative characterisation of the content-location, presence of photographs of spiders and bites, number and type of errors, consultation of experts, and a subjective assessment of sensationalism. In total, we collected 5348 unique news articles from 81 countries in 40 languages. The database refers to 211 identified and unidentified spider species and 2644 unique human-spider encounters (1121 bites and 147 as deadly bites). To facilitate data reuse, we explain the main caveats that need to be made when analysing this database and discuss research ideas and questions that can be explored with it.


Subject(s)
Spider Bites , Spider Venoms , Spiders , Animals , Databases, Factual , Humans , Language , Newspapers as Topic
7.
Database (Oxford) ; 20212021 10 15.
Article in English | MEDLINE | ID: mdl-34651181

ABSTRACT

Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology. Database URL:https://spidertraits.sci.muni.cz/.


Subject(s)
Arthropods , Spiders , Animals , Databases, Factual , Ecosystem , Phenotype , Spiders/genetics
8.
Proc Biol Sci ; 288(1952): 20210696, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34074126

ABSTRACT

Social selection occurs when traits of interaction partners influence an individual's fitness and can alter total selection strength. However, we have little idea of what factors influence social selection's strength. Further, social selection only contributes to overall selection when there is phenotypic assortment, but simultaneous estimates of social selection and phenotypic assortment are rare. Here, we estimated social selection on body size in a wild population of New Zealand giraffe weevils (Lasiorhynchus barbicornis). We measured phenotypic assortment by body size and tested whether social selection varied with sex ratio, density and interacted with the body size of the focal individual. Social selection was limited and unaffected by sex ratio or the size of the focal individual. However, at high densities social selection was negative for both sexes, consistent with size-based competitive interactions for access to mates. Phenotypic assortment was always close to zero, indicating negative social selection at high densities will not impede the evolution of larger body sizes. Despite its predicted importance, social selection may only influence evolutionary change in specific contexts, leaving direct selection to drive evolutionary change.


Subject(s)
Weevils , Animals , Biological Evolution , Body Size , Female , Male , New Zealand , Phenotype , Selection, Genetic
10.
Proc Biol Sci ; 286(1905): 20191063, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31238851

ABSTRACT

Sexually selected weapons often function as honest signals of fighting ability. If poor-quality individuals produce high-quality weapons, then receivers should focus on other, more reliable signals. Cost is one way to maintain signal integrity. The costs of weapons tend to increase with relative weapon size, and thereby restrict large weapons to high-quality individuals who can produce and maintain them. Weapon cost, however, appears to be unpredictably variable both within and across taxa, and the mechanisms underlying this variation remain unclear. We suggest variation in weapon cost may result from variation in weapon composition-specifically, differences in the amount of muscle mass directly associated with the weapon. We test this idea by measuring the metabolic cost of sexually selected weapons in seven arthropod species and relating these measures to weapon muscle mass. We show that individuals with relatively large weapon muscles have disproportionately high resting metabolic rates and provide evidence that this trend is driven by weapon muscle mass. Overall, our results suggest that variation in weapon cost can be partially explained by variation in weapon morphology and that the integrity of weapon signals may be maintained by increased metabolic cost in species with relatively high weapon muscle mass.


Subject(s)
Arthropods/physiology , Muscles , Sexual Behavior , Animals , Phenotype , Weapons
11.
Evolution ; 73(4): 762-776, 2019 04.
Article in English | MEDLINE | ID: mdl-30840338

ABSTRACT

When an individual's reproductive success relies on winning fights to secure mating opportunities, bearing larger weapons is advantageous. However, sexual selection can be extremely complex, and over an animal's life the opportunity to mate is influenced by numerous factors. We studied a wild population of giraffe weevils (Lasiorhynchus barbicornis) that exhibit enormous intra and intersexual size variation. Males bear an elongated rostrum used as a weapon in fights for mating opportunities. However, small males also employ sneaking behavior as an alternative reproductive tactic. We investigated sexual selection on size by tracking individual males and females daily over two 30-day periods to measure long-term mating success. We also assessed how survival and recapture probabilities vary with sex and size to determine whether there might be a survival cost associated with size. We found evidence for directional selection on size through higher mating success, but no apparent survival trade-off. Instead, larger individuals mate more often and have a higher survival probability, suggesting an accumulation of benefits to bigger individuals. Furthermore, we found evidence of size assortative mating where males appear to selectively mate with bigger females. Larger and more competitive males secure matings with larger females more frequently than smaller males, which may further increase their fitness.


Subject(s)
Longevity , Selection, Genetic , Weevils/physiology , Animals , Body Size/genetics , Female , Male , New Zealand , Weevils/genetics
12.
PLoS One ; 11(6): e0155707, 2016.
Article in English | MEDLINE | ID: mdl-27303816

ABSTRACT

In some species males increase their reproductive success by forcing females to copulate with them, usually by grasping the female or pinning her to the ground to prevent her from escaping. Here we report an example of males coercing copulation by trapping a female in a confined space. During mate-searching, female Uca mjoebergi fiddler crabs visit males and choose whether or not to enter their burrow for inspection. Males typically enter the burrow first and we found that 71% of females will follow him down and 54% decide to stay and mate. However, some males use an alternative tactic where he will wait for the female to enter the burrow first, after which he traps her inside. Although a significantly lower percentage of females will enter a burrow following this behaviour (41%), upon entry 79% females that enter will become trapped and almost all of these females (90%) produce a clutch of eggs. Our observations suggest that males are able to gain fertilisations from females that may not have remained in the burrow by trapping them and coercing them to mate.


Subject(s)
Brachyura/physiology , Mating Preference, Animal/physiology , Sexual Behavior, Animal/physiology , Spatial Behavior/physiology , Animals , Body Size/physiology , Female , Male , Reproduction/physiology
13.
Sci Rep ; 5: 16368, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26542456

ABSTRACT

Alternative reproductive tactics in animals are commonly associated with distinct male phenotypes resulting in polymorphism of sexually selected weapons such as horns and spines. Typically, morphs are divided between small (unarmed) and large (armed) males according to one or more developmental thresholds in association with body size. Here, we describe remarkable weapon trimorphism within a single species, where two exaggerated weapon morphs and a third morph with reduced weaponry are present. Male Pantopsalis cheliferoides harvestmen display exaggerated chelicerae (jaws) which are highly variable in length among individuals. Across the same body size spectrum, however, some males belong to a distinct second exaggerated morph which possesses short, broad chelicerae. Multiple weapon morphs in a single species is a previously unknown phenomenon and our findings have significant implications for understanding weapon diversity and maintenance of polymorphism. Specifically, this species will be a valuable model for testing how weapons diverge by being able to test directly for the circumstances under which a certain weapon type is favoured and how weapon shape relates to performance.


Subject(s)
Arachnida/physiology , Horns/anatomy & histology , Animals , Behavior, Animal , Humans , Male
14.
PLoS One ; 8(11): e82467, 2013.
Article in English | MEDLINE | ID: mdl-24312425

ABSTRACT

Sexual selection has driven the evolution of exaggerated traits among diverse animal taxa. The production of exaggerated traits can come at a cost to other traits through trade-offs when resources allocated to trait development are limited. Alternatively some traits can be selected for in parallel to support or compensate for the cost of bearing the exaggerated trait. Male giraffe weevils (Lasiorhynchus barbicornis) display an extremely elongated rostrum used as a weapon during contests for mates. Here we characterise the scaling relationship between rostrum and body size and show that males have a steep positive allometry, but that the slope is non-linear due to a relative reduction in rostrum length for the largest males, suggesting a limitation in resource allocation or a diminishing requirement for large males to invest increasingly into larger rostra. We also measured testes, wings, antennae, fore- and hind-tibia size and found no evidence of a trade-off between these traits and rostrum length when comparing phenotypic correlations. However, the relative length of wings, antennae, fore- and hind-tibia all increased with relative rostrum length suggesting these traits may be under correlational selection. Increased investment in wing and leg length is therefore likely to compensate for the costs of flying with, and wielding the exaggerated rostrum of larger male giraffe weevils. These results provide a first step in identifying the potential for trait compensation and trades-offs, but are phenotypic correlations only and should be interpreted with care in the absence of breeding experiments.


Subject(s)
Biological Evolution , Weevils/physiology , Animals , Behavior, Animal , Female , Male , New Zealand , Weevils/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...