Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 16(2): e0246885, 2021.
Article in English | MEDLINE | ID: mdl-33607651

ABSTRACT

Bacillus thuringiensis (Bt) belongs to the Bacillus cereus (Bc) group, well known as an etiological agent of foodborne outbreaks (FBOs). Bt distinguishes itself from other Bc by its ability to synthesize insecticidal crystals. However, the search for these crystals is not routinely performed in food safety or clinical investigation, and the actual involvement of Bt in the occurrence of FBOs is not known. In the present study, we reveal that Bt was detected in the context of 49 FBOs declared in France between 2007 and 2017. In 19 of these FBOs, Bt was the only microorganism detected, making it the most likely causal agent. Searching for its putative origin of contamination, we noticed that more than 50% of Bt isolates were collected from dishes containing raw vegetables, in particular tomatoes (48%). Moreover, the genomic characterization of isolates showed that most FBO-associated Bt isolates exhibited a quantified genomic proximity to Bt strains, used as biopesticides, especially those from subspecies aizawai and kurstaki. Taken together, these results strengthen the hypothesis of an agricultural origin for the Bt contamination and call for further investigations on Bt pesticides.


Subject(s)
Bacillus thuringiensis/genetics , Food Microbiology , Genomics , Genotype , Phenotype , France , Genome, Bacterial/genetics
2.
Euro Surveill ; 21(48)2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27934583

ABSTRACT

The aim of this study was to identify and characterise Bacillus cereus from a unique national collection of 564 strains associated with 140 strong-evidence food-borne outbreaks (FBOs) occurring in France during 2007 to 2014. Starchy food and vegetables were the most frequent food vehicles identified; 747 of 911 human cases occurred in institutional catering contexts. Incubation period was significantly shorter for emetic strains compared with diarrhoeal strains A sub-panel of 149 strains strictly associated to 74 FBOs and selected on Coliphage M13-PCR pattern, was studied for detection of the genes encoding cereulide, diarrhoeic toxins (Nhe, Hbl, CytK1 and CytK2) and haemolysin (HlyII), as well as panC phylogenetic classification. This clustered the strains into 12 genetic signatures (GSs) highlighting the virulence potential of each strain. GS1 (nhe genes only) and GS2 (nhe, hbl and cytK2), were the most prevalent GS and may have a large impact on human health as they were present in 28% and 31% of FBOs, respectively. Our study provides a convenient molecular scheme for characterisation of B. cereus strains responsible for FBOs in order to improve the monitoring and investigation of B. cereus-induced FBOs, assess emerging clusters and diversity of strains.


Subject(s)
Bacillus cereus/genetics , Bacterial Toxins/biosynthesis , Bacteriological Techniques/methods , DNA, Bacterial/genetics , Depsipeptides/biosynthesis , Disease Outbreaks , Enterotoxins/biosynthesis , Foodborne Diseases/epidemiology , Virulence Factors/genetics , Bacillus cereus/metabolism , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Bacterial Typing Techniques/methods , Base Sequence/genetics , Depsipeptides/genetics , Enterotoxins/genetics , Food Microbiology , France/epidemiology , Gene Amplification , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Humans , Phylogeny , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL